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S1. DETAILS OF NONEQUILIBRIUM IMAGINARY-TIME DYNAMICS IN PQMC SIMULATION

A. Imaginary-time relaxation dynamics simulated by PQMC

We focus on the imaginary-time relaxation dynamics from a fully ordered or Dirac semimetal initial state |ψ0⟩. The
initial state is prepared by solving H0 |ψ0⟩ = E0 |ψ0⟩, where H0 is the initial Hamiltonian and E0 is the ground state
energy. With these initial states, the evolution of the observable O(τ) is given by

⟨O(τ)⟩ = ⟨ψ0| e−
τ
2H O e−

τ
2H |ψ0⟩

⟨ψ0| e−τH |ψ0⟩
. (S1)

As τ → ∞, e−
τ
2H projects the system onto the ground state of H.

The imaginary-time relaxation dynamics can be simulated via the projector quantum Monte Carlo (PQMC) (51,
53, 54). In conventional PQMC studies, a sufficiently large τ (usually τ should be several times as large as L) is
needed to ensure that the ground state is obtained. Then the physical qualities are calculated in the ground state.

In contrast, in our work, we focus on the short-time stage of the imaginary-time relaxation process, where τ does
not need to be large compared to L. In this regime, the system remains in a nonequilibrium state rather than the
ground state This stage is usually discarded in conventional PQMC studies. In our previous work, we systematically
and carefully investigated the imaginary-time nonequilibrium dynamics of Dirac fermion systems (50), and found
that although this setup goes beyond the conventional PQMC framework, choosing a small τ only introduces some
dependence on the initial state, while the ground-state information, particularly universal quantum criticality, still
manifests in the nonequilibrium dynamics. With a properly chosen initial state, one can fix τ/Lz to a small value and
still observe quantum phase transitions via standard finite-size scaling analysis, even in this nonequilibrium regime.

A similar practice has also appeared earlier in the context of finite-temperature QMC (FTQMC). In FTQMC, the
expectation value of an observable is given by ⟨O⟩ = 1

ZTr[e
−β(H−µN)O], with Z = Tr[e−β(H−µN)] (5, 6, 75). Here,

β = 1/kBT is the inverse temperature, and it corresponds to the imaginary-time extent in the Monte Carlo simulation.
Unlike zero-temperature PQMC, FTQMC involves both quantum and thermal fluctuations. When FTQMC is used
to study zero-temperature quantum phase transitions, it is common to fix β/Lz to a finite value (typically β = Lz) to
obtain temperature-independent finite-size scaling. There are also studies using smaller values, such as β = 1

4L
z (76).

Although both β and τ represent the imaginary-time length in QMC simulations, they carry distinct physical
meanings. A shorter β in FTQMC corresponds to a higher-temperature thermal equilibrium state, and it is widely
accepted that β/Lz can be used as a dimensionless scaling factor. In contrast, a shorter τ in zero-temperature
PQMC corresponds to a nonequilibrium state and has rarely been considered outside the context of imaginary-
time nonequilibrium dynamics (49, 50, 77). Here, based on our understanding of imaginary-time nonequilibrium
dynamics, we leverage this idea to address the fermion sign problem in zero-temperature PQMC simulation. Moreover,
compared to conventional PQMC and FTQMC approaches, our framework further alleviates the sign problem by
flexibly choosing appropriate initial states, while the consistency of results obtained from different initial states
provides a useful means of self-consistency check.

B. Hubbard-Stratonovich transformation

In the PQMC simulations, the interaction terms in the form of four-fermion operators should be decoupled via
Hubbard-Stratonovich (HS) transformation. The implementation of PQMC begins with performing the Trotter de-
composition to discretize the imaginary-time evolution operator into M = τ/∆τ (where M is an integer) time slices,
i.e.,

e−τH =
M∏
m=1

[
e−∆τHte−∆τHU +O

(
∆τ2

)]
, (S2)

where Ht and HU represent the free fermion hopping term and the interaction term in the Hamiltonian, respectively.
Then, we use the HS transformation on HU to decouple the fermion-fermion interaction into interactions between
non-interacting fermions and auxiliary fields.

For the single-Dirac-fermion Hubbard model, we use the following HS transformation:

e−∆τU(ni↑− 1
2 )(ni↓−

1
2 ) =

1

2
e−

∆τU
4

∑
si=±1

eλsi(c
†
i↑ci↓+c

†
i↓ci↑). (S3)



where coshλ = e
∆τU

2 . For U > 0 (Hubbard repulsive interaction), the sign problem arises for all channels. We
here choose the σx channel to mitigate the sign problem (55). This choice also affects the structure of the fermion
determinant. Specifically, due to the spin-flipping nature of the free-fermion hopping term in the single-Dirac-fermion
Hubbard model, the σx-channel decoupling leads to an auxiliary-field Hamiltonian that only has off-diagonal blocks.
As a result, the total fermion determinant can be factorized into the product of two smaller determinants: det(M) ∝
det(M↑↓) det(M↓↑). In contrast, decoupling in the σz channel does not permit this factorization. This results in a
single determinant of twice the dimension, which typically exacerbates the sign problem.

For the spinless t-V model, previous studies have shown that at half-filling, the model can be decoupled into the
hopping channel without the sign problem, which has been demonstrated from various perspectives (20, 21, 23, 24).
In our study, however, we use the HS transformation in a sign-problematic channel, namely the density channel:

e−∆τV (ni− 1
2 )(nj−

1
2 ) =

1

2
e−

∆τV
4

∑
sij=±1

eλsij(ni−nj). (S4)

where coshλ = e
∆τV

2 . Despite the presence of sign problem, the numerical results we obtained are consistent with the
previously established results, demonstrating the reliability of our new method.

For the SU(3) repulsive Hubbard model, we use the following HS transformation:

e∆τ
U
2 (niα−niβ)2 =

1

2

∑
si=±1

eλsi(niα−niβ). (S5)

where coshλ = e
∆τU

2 . For all the known algorithms, the SU(3) repulsive Hubbard model is sign-problematic for any
decoupling channel in HS transformation.

C. Sign problem in PQMC

Through the HS transformation, the Hamiltonian can be converted into a quadratic effective form of fermionic
operators that depends on the spacetime configuration of the auxiliary fields. The partition function can then be
expressed as a sum of configuration weight w(c), i.e., Z =

∑
c w(c). These weights are given by the determinant of

the effective Hamiltonian of fermions (51).
In PQMC simulations, we sample the space-time dependent configuration of the auxiliary field. For sign-free models,

the sampling probability is proportional to the configuration weight w(c). However, for the sign-problematic models,
the configuration weight w(c) is not positive definite, so it cannot be used directly as the sampling probability. Instead,
the absolute value |w(c)| is used as the sampling probability, and the observables are computed as follows (9, 15):

⟨O⟩ =
∑

c w(c)O(c)∑
c w(c)

=

∑
c |w(c)|sign(c)O(c)/

∑
c |w(c)|∑

c |w(c)|sign(c)/
∑

c |w(c)|
=

⟨O sign⟩|w|

⟨sign⟩|w|
. (S6)

Here, we have used

⟨ 2 ⟩|w| =

∑
c 2 |w(c)|∑

c |w(c)|
, (S7)

to denote the expectation value obtained using |w(c)| as the sampling probability. The sign problem introduces a
cost that the average sign ⟨sign⟩|w| tends to zero due to the frequent cancellation of positive and negative weights

across different configurations, leading to the consequence that (S6) becomes a ratio between two tiny numbers. This
is numerically unstable and introduces significant statistical errors. Specifically, it is proven that the error generally
follows (9):

∆ ⟨O⟩ ∝ 1

⟨sign⟩|w|
∝ eτN∆f , (S8)

where ∆f denotes the difference in the free energy density between the actual fermionic system and its corresponding
bosonic system. The exponential dependence of the error amplification factor on the imaginary time τ and the number
of particles N means that QMC requires exponentially long computational times to achieve controllable statistical
errors when solving ground-state problems of quantum systems in the thermodynamic limit.

In subsequent analyses, we use the average sign ⟨sign⟩|w| to measure the severity of the sign problem. The lower

value of the average sign ⟨sign⟩|w| indicates a more severe sign problem.



D. Applicability and limitations of the nonequilibrium approach

The proposed nonequilibrium method offers an efficient pathway for exploring ground-state properties by circum-
venting the sign problem in our model and significantly lowering computational cost. This makes it highly effective
for mapping the phase diagram and extracting critical properties of the quantum phase transition. However, it is im-
portant to emphasize that this is not a universal solution for all models plagued by the sign problem. Here, we discuss
the applicability and limitations of our approach. The nonequilibrium approach is subject to two key limitations that
constrain its applicability:

1. One cannot take the imaginary time arbitrarily short in order to ensure that the sign problem is mild for all
models. If the evolution time is too short, the system retains too much memory of the initial state, and the
scaling theory breaks down. For instance, this breakdown of scaling theory occurs when the characteristic length
scale of the evolution, ξl ∝ τ1/z, becomes comparable to the system’s ultraviolet (UV) cutoff—in our case, the
lattice spacing (set to unity). Under this condition, the behavior of observables is dominated by non-universal,
high-energy physics, rendering the scaling analysis invalid.

2. This method is applicable to the continuous quantum phase transitions. This method is applicable for studying
continuous quantum phase transitions. Our approach can be applied to determine the ground-state phase
diagram and to identify and locate possible QCPs. If a QCP exists, our method can accurately determine the
critical exponents based on the scaling theory of continuous transitions. On the other hand, if the calculation
reveals that the transition does not exhibit scaling behavior, it implies a first-order transition, for which there is
currently no well-established scaling analysis framework to use. In addition, our method is not applicable deep
in the ordered phase, far away from the transition point.

We begin by elaborating on the first limitation, and provide a framework for understanding when the method is
effective and when it fails. In general, fixing a system size L for discussion, the effectiveness of our method depends
on three characteristic imaginary-time scales: (1) the minimum time τneq. at which the nonequilibrium scaling theory
becomes valid; (2) the minimum time τeq. required for conventional PQMC to project onto the ground state; and (3)
the maximum time τsign before the sign problem becomes too severe to obtain reliable results. Empirically, τeq. varies
slightly between models but is usually around two to three times the linear system size L. The time τneq. required for
short-time scaling to apply is typically one or two orders of magnitude smaller than τeq.. In contrast, τsign can differ
drastically from model to model and is the dominant factor that determines whether our approach will be effective.
This leads to three possible scenarios:

1. τneq. < τeq. < τsign: the sign problem is mild, and equilibrium methods already work well. Our nonequilibrium
method only improves computational efficiency.

2. τneq. < τsign < τeq.: equilibrium methods fail due to the sign problem, but the nonequilibrium method still
works. This is the type of situation our work is focused on.

3. τsign < τneq. < τeq.: the sign problem is too severe even at short times. In this case, the nonequilibrium method
also fails.

Because the sign problem behaves differently across models, τsign varies accordingly. Based on this classification, we
can view sign-problematic strongly correlated models as falling into three broad categories. The general argument
that a QCP can be approached using sufficiently short imaginary-time simulations where the sign problem remains
mild is valid only in models of type 1 and type 2. It does not hold in type 3 models, where the sign problem is already
severe even at short times. Naturally, our method is not a fully general solution to the sign problem in all cases.
What it does provide is a practical and effective approach for models of type 2, which were previously inaccessible
due to severe sign problems in equilibrium simulations. With our method, such models become tractable.

Within the same model and parameter set, τsign also depends on the system size L. Typically, τsign decreases as
L increases. This is because the average sign scales exponentially with both the particle number—which grows with
system size (N ∝ Ld)—and τ , as described by (S8) (9), although exceptions have been noted (52, 62). Taking this size
dependence into account, we can sketch a regime diagram in the (L, τ) plane with the three regimes described above,
as illustrated in Fig. S1. This diagram clearly demarcates the three previously described regimes and highlights a key
advantage of the nonequilibrium method: it grants access to significantly larger system sizes than those achievable
with conventional equilibrium QMC.

The above classification only provides general criteria for when the nonequilibrium method is effective, while the
quantitative determination of the nonequilibrium scaling regime in practical applications is illustrated in detail with
procedures and examples in Sec. S2B.
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FIG. S1. Schematic illustration of the three scenarios regarding the sign problem. The shaded region indicates where the sign
problem is not severe and simulations are feasible. The green region corresponds to scenario 1 (τneq. < τeq. < τsign), where
equilibrium methods also work. The yellow region corresponds to scenario 2 (τneq. < τsign < τeq.), where only the nonequilibrium
method is feasible. The red region corresponds to scenario 3 (τsign < τneq. < τeq.), where even the nonequilibrium approach

fails. The boundaries define the maximum accessible system sizes L
(eq.)
max and L

(neq.)
max for each method.

Next, we discuss another boundary case of this nonequilibrium short-time method, i.e., the first-order phase tran-
sition. In the main text, we have already demonstrated that our nonequilibrium method can determine the existence
of a continuous phase transition based on scaling forms. The key criteria are: 1) For a given τL−z, the crossing
points of the correlation-length ratio or Binder ratio curves converge to a single point as the system size increases
(dimensionless quantities exhibit scale invariance at the critical point). 2) The nonequilibrium critical relaxation
processes of physical quantities such as the structure factor and fermion correlation display scaling collapse.

In fact, we are also able to identify a first-order phase transition during the short-time evolution through opposite
characteristics: 1) The crossing points of the correlation-length ratio or Binder ratio curves do not converge to a
single point. 2) The nonequilibrium critical relaxation processes of physical quantities such as the structure factor
and fermion correlation cannot be well scaled to collapse. Additionally, 3) due to the coexistence of two phases at
a first-order phase transition, the Binder ratio typically shows negative dips at the transition point, and the Monte
Carlo sampling distribution of the structure factor exhibits a double peak. The emergence of negative dips in the
results of Binder ratio is a hallmark of the first-order transition.

As a typical example, we demonstrate how to identify the first-order phase transition in the q = 6 quantum Potts
chain during short imaginary time evolution. The Hamiltonian is given by:

H = −qJ
∑
i

q−1∑
m=0

P
(m)
i P

(m)
i+1 − h

∑
i

∑
m̸=n

|m⟩i⟨n| , (S9)

where P
(m)
i ≡ |m⟩i⟨m| is the projection operator on site i, and the tuning parameter is g ≡ h/J . For g < 1, the

ground state is in the ferromagnetic phase, and for g > 1, it is in the paramagnetic phase. For the case of q = 6, a
first-order phase transition occurs at gc = 1. We use the time-evolving block decimation (TEBD) method to simulate
the system’s imaginary time evolution starting from an ordered ferromagnetic initial state (e.g., all sites choosed into
m = 0 state) and observe the order parameter M and Binder ratio R:

M ≡ 1

L

L∑
i=1

si , R ≡ 1− ⟨M4⟩
3 ⟨M2⟩2

, (S10)

where si ≡ q
q−1

(
P

(0)
i − 1

q

)
. Using the same procedure as in the main text, we take a short imaginary time τ/L = 0.3.

The variation of Binder ratio R with g is shown in Fig. S2a. The curves for different system sizes do not intersect at



a b c d

τ/L=0.3

FIG. S2. First-order phase transition characteristics in the q = 6 quantum Potts chain observed during short
imaginary time evolution. a, Binder ratio versus g for different system sizes, where the curves do not intersect at a single
point, and negative dips are observed. The emergence of negative dips in the Binder ratios is a hallmark of first-order transition.
b, Imaginary time relaxation of the order parameter M starting from the ordered phase at g = 1. c, Failure of scaling collapse
for b, with a = 1.0 as an example. d, Fitting M ∝ L−a for fixed τ/L, where the value of a does not converge as τ/L increases.

a single point, and there are distinct negative dips, which are characteristic of a first-order phase transition and can
appear with short imaginary time evolution at τ/L = 0.3. Fig. S2b shows the imaginary time relaxation of the order
parameter M starting from the ordered phase at g = 1, which decays exponentially with τ . Fig. S2c demonstrates the
failure of scaling collapse for M , using a scaling exponent a = 1.0 as an example. Adjusting a does not allow these
curves to collapse or partially collapse. If we fix τ/L and perform scaling fitting according to the form M ∝ L−a,
the results for a are shown in Fig. S2d, and they do not converge as τ/L increases. These results, which violate
scaling forms, clearly exclude the possibility of a continuous phase transition here. This example illustrates that a
first-order phase transition can be distinguished from a continuous phase transition even during short imaginary time
evolution. However, for such cases, although the rough phase diagram can still be determined, the precise location of
the transition point may not be accurately obtained within the short imaginary-time regime since the current scaling
form no longer holds, and may instead require extrapolation from finite-time data.

E. Guiding principles for choosing the value of τ/Lz in simulations

In the main text, we adopt the form τ = (const.)× Lz to identify quantum critical points. We use coefficients 0.3
in Figs. 1b–1c and 2a–2b, and 0.25 in Figs. 3b–3c. When choosing these specific coefficients, we carefully balanced
three considerations: the severity of the sign problem, the validity of the scaling theory, and the numerical precision
of the estimated critical point. In general, the following guiding principles apply:

1. The severity of the sign problem is the most important factor. Usually, slightly increasing the value of τ/Lz

makes the sign problem significantly worse, and vice versa. For example, if the coefficient is increased from 0.3
to 0.6, the sign problem becomes notably more severe, significantly reducing the accessible system size. From
this guiding principle, τ/Lz should be chosen as small as possible.

2. Another important factor is the validity of the scaling theory. If τ/Lz is too small, the nonequilibrium scaling
theory may not hold well at currently accessible finite sizes. Specifically, for example, when it is taken below 0.1,
from Figs. 1d, 2c, and 3d one can see that the data collapse gradually starts to break down, meaning finite-size
effects become significant. This condition is relatively flexible. As long as τ/Lz is above a certain threshold,
the scaling holds well, and variations in the coefficient do not significantly affect the results. Values such as
0.25, 0.3, and 0.5 are typically used in the literature (50, 78), where estimates of critical points at different τ/Lz

values were found to agree within statistical error, providing a useful self-consistency check.

3. Another somewhat subtle factor is the resolution of the critical point. Even within the valid scaling regime,
choosing a smaller τ/Lz broadens the nonequilibrium critical region. This broadening manifests as a diminished
dependence of the dimensionless correlation length ratio R on system size L over a wide range of the tuning
parameter U near Uc, making the crossing point of R curves (such as in Fig. 1b) less sharp. This leads to
reduced numerical precision in locating the critical point. Therefore, from this perspective, it is preferable to
choose a somewhat larger τ/Lz to enhance resolution.

In summary, when applying the nonequilibrium approach to determine quantum critical points, one must balance



these considerations within the valid scaling regime. The goal is to choose a value of τ/Lz that optimizes both
precision and accuracy. In our experience, the severity of the sign problem is often the most decisive factor.

S2. MORE DETAILS FOR THE SINGLE-DIRAC-FERMION HUBBARD MODEL

A. Sign problem behaviors

a b

FIG. S3. Evolution of the average sign at the critical point. a, Evolution from the DSM initial state. b, Evolution from
the FM initial state.

Fig. S3 shows that near the critical point of the single-Dirac-fermion Hubbard model, the average sign ⟨sign⟩ decays
in the imaginary-time relaxation with the Dirac semimetal (DSM) and the ferromagnetic (FM) initial states. We find
that different initial states can have different decay rates. In the relaxation with the DSM initial state, the average
sign decays more slowly. The data presented in Fig. 1 of the main text show the relaxation results starting from the
DSM initial state.

B. Verification of the QCP and critical exponents

Several physical quantities are needed to describe the universal scaling behaviors near the QCP. The spin structure
factor S(k) with momentum k is defined as

S(k) ≡ 1

L2d

∑
i,j

eik·(ri−rj)⟨Szi Szj ⟩, (S11)

where the local spin operator is Szi ≡ c†iσ
zci with c† ≡ (c†↑, c

†
↓). In addition, the correlation length ratio RFM is

defined as

RFM ≡ 1− S(k = ∆k)

S(k = 0)
, (S12)

where ∆k = 1
Lb1 + 1

Lb2 is the minimum momentum of electrons in a lattice with periodic boundary conditions, and
b1, b2 are the reciprocal lattice vectors.

The fermion correlation function Gf(k) is defined as

Gf(k) ≡
1

L2

∑
ij

eik(ri−rj) ⟨c†i↑cj↓⟩ . (S13)

We remark that the fermionic correlation Gf(k) is defined in momentum space, as commonly done in related works (50,
55, 57, 79, 80). Compared to real-space correlations, which often decay in an oscillatory manner and thus exhibit some-
what subtle finite-size effects (e.g., as it may depend on the even-odd parity of the distance or the size), momentum-
space correlations are often more straightforward and robust for analysis. Physically, the momentum-space fermionic
correlation defined in Eqs. (S13), (S22) and (S34) captures the quasiparticle weight Z, which characterizes the dis-
continuity in the occupation number across the Fermi surface. Specifically, Z = limL→∞ 2 |Gss̄(∆k)|, where s and
s̄ denote the two components of the Dirac spinor, corresponding to spin (↑, ↓) or sublattice (A,B) degrees of free-
dom in different models. In contrast, momentum-space correlations between the same spinor components are trivial,



Gss(k) = 1/2 for all k, due to spontaneous breaking of chiral symmetry. For detailed derivations and discussions, see
Refs. (50, 79).

In the main text and figures of data, we abbreviate SFM ≡ S(k = 0) and Gf ≡ Gf(k = ∆k), unless otherwise
specified.

The correlation length ratio RFM is a dimensionless quantity. In the nonequilibrium critical region, the correlation
length ratio RFM satisfies the following scaling form:

RFM(g, τ, L) = fR(gL
1/ν , τL−z), (S14)

where g = U −Uc. To determine the quantum critical point Uc, we fix τL−z to be constant (e.g., we take τL−z = 0.3
in the main text), so the scaling form of RFM reduces to R(g, τ, L) = fR1(gL

1/ν), which is similar to the traditional
finite-size scaling. Accordingly, the critical point can be determined by the intersection of curves of RFM versus U for
different L. We fit Uc and ν based on the expansion of the scaling form:

RFM(g, L) = fR1(gL
1/ν) =

nmax∑
n=0

ang
nLn/ν . (S15)

where we appropriately truncate the scaling functions with polynomials (57).
In the main text, based on the results from the DSM initial state, we fit according to Eq. (S15) and obtain

Uc = 7.220(37), 1/ν = 1.18(3) at τ = 0.3Lz. Here we supplement data in Figs. S4c-S4d, where τ is extended to 0.5Lz,
giving Uc = 7.225(34), 1/ν = 1.16(9) at τ = 0.5Lz, which is consistent with the results at τ = 0.3Lz within error bars.
This demonstrates that the imaginary time we used has already entered the nonequilibrium scaling regime and that
the critical point values have converged. On the other hand, we have also considered the FM initial state, as shown
in Figs. S4a-S4b, which gives Uc = 7.214(44), 1/ν = 1.05(10) at τ = 0.5Lz, also close to the results obtained from
the DSM initial state. These results not only confirm the values of the critical point Uc and the critical exponent
1/ν, but also show that the initial states can be chosen flexibly in our method, which provides a route to achieve
reliable values of critical exponents by benchmarking the results with different initial states. This flexibility offers
more possible options for alleviating the sign problem.

a b c d

FIG. S4. Verification of quantum criticality using different initial states and imaginary times. a–b, With the FM
initial state and τ = 0.5Lz, the data collapse yields Uc = 7.214(44) and ν−1 = 1.05(10). c–d, With the DSM initial state and
τ = 0.5Lz, the data collapse yields Uc = 7.225(34) and ν−1 = 1.16(9).

The comparison of results from different initial states, as shown in Table S1, provides an excellent bootstrap-style
self-consistency check for the accuracy of our method, which we further illustrate below through the determination of
the anomalous dimensions.

The anomalous dimensions of the bosonic field ηϕ and the fermionic field ηψ can be determined by the following
scaling relations:

S(k = 0) = L−(1+ηϕ)fS

(
gL1/ν , τL−z

)
, (S16)

Gf(k = ∆k) = L−ηψfG

(
gL1/ν , τL−z

)
. (S17)

We obtain ηϕ = 0.34(5) and ηψ = 0.131(20) from the data collapse in the relaxation dynamics at g = 0, as shown in
Fig. S5. Note that only the data within the nonequilibrium scaling region are included in the data collapse analysis.
Below we present the general principles and technical details for extracting the critical exponents.



TABLE S1. Comparison of critical properties for the single-Dirac-fermion Hubbard model calculated by different
methods. The method used in this work is the nonequilibrium short-time PQMC.

Methods Uc ν−1 ηϕ ηψ

This work (from DSM, τ = 0.3Lz) 7.220(37) 1.18(3) 0.36(3) 0.134(3)
This work (from DSM, τ = 0.5Lz) 7.225(34) 1.16(9) - -
This work (from FM, τ = 0.5Lz) 7.214(44) 1.05(10) 0.35(3) 0.136(14)
Gutzwiller-PQMC (equilibrium) (55) 7.275(25) 1.19(3) 0.31(1) 0.136(5)
FRG (58) - 1.229 0.372 0.131

a b c d

FIG. S5. Relaxation dynamics at QCP with FM initial state in single-Dirac-fermion Hubbard model. a-b,
Curves of SFM ≡ S(k = 0) versus τ for different sizes before and after rescaling. c-d, Curves of Gf ≡ Gf(k = ∆k) versus τ
before and after rescaling. Data collapse in the relaxation dynamics shows ηϕ = 0.34(5) and ηψ = 0.131(20). Only the interval
with sufficiently large τL−z is used for the data collapse, with the technical details shown in Fig. S6.

As we stated in Sec. S1E, when τL−z is sufficiently large, the system enters the nonequilibrium scaling region,
and the critical exponents can be accurately extracted during the nonequilibrium process without dependence on
the initial state. In contrast, for too small values of τL−z, the system remains too close to the initial state and lies
outside the nonequilibrium scaling region governed by the critical point, where the scaling relations no longer hold.
In practice, we apply this criterion to precisely determine the critical exponents and delineate the non-equilibrium
scaling region. During data collapse analysis, we systematically vary the lower bound of τL−z , denoted as (τL−z)min,
and examine how the fitted critical exponents vary with (τL−z)min, as shown in Figs. S6a and e. As (τL−z)min for the
data collapse increases, the fitted critical exponents gradually converge and, within the resolution of the error bars,
no longer change with (τL−z)min. Moreover, the critical exponents obtained from nonequilibrium processes starting
from different initial states converge to the same results within the error bars—this is the hallmark of having entered
the nonequilibrium scaling region.

Regarding the critical exponent ηϕ in the single-Dirac-fermion Hubbard model, Fig. S6a shows that ηϕ converges
once (τL−z)min > 0.25, and the results obtained from nonequilibrium processes starting from different initial states
are consistent. We use the reduced χ2

ν to assess the quality of the data collapse:

χ2
ν =

1

ν

N∑
i=1

NL∑
L

(yiL − µi)
2

∆y2iL
. (S18)

For the rescaled curves corresponding to different system sizes L (NL curves in total), we perform linear interpolation
and then uniformly sample N = 50 values of τL−z to obtain the curve ordinates yiL and their uncertainties ∆yiL. We
then compute the weighted mean µi =

∑
L wiL yiL/

∑
L wiL with weights wiL = 1/∆y2iL. The degrees of freedom for

the reduced chi-square are ν = N(NL − 1). As shown in Fig. S6b, when (τL−z)min is very small, χ2
ν ≫ 1, indicating

very poor collapse quality and that the scaling form cannot describe such short (τL−z)min. As (τL−z)min increases,
χ2
ν decreases. Around 0.2 < (τL−z)min < 0.35, χ2

ν approaches 1, where the quality of the data collapse is optimal.
Further increasing (τL−z)min leads to χ2

ν < 1, which implies overfitting. This occurs because data points at larger
τL−z suffer from more severe sign problems and thus have larger errors, exceeding the resolution of the collapse.
Taking into account the convergence behavior in Fig. S6a, the consistency between results from different initial states,
and the collapse quality shown in Fig. S6b, we finally choose (τL−z)min = 0.3 as the lower bound for τL−z in the data
collapse analysis of the structure factor S for the single-Dirac-fermion Hubbard model. We evaluate the uncertainty
of the critical exponent using a resampling technique. As shown in Fig. S6c, we randomly perturb the data of the
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FIG. S6. Technical details of determining the critical exponents in the single-Dirac-fermion Hubbard model
via data collapse. a–d, Determination of the critical exponent ηϕ. a, Fitted values of ηϕ versus the lower bound

(
τL−z)

min
used in the data collapse analysis. The legend “DSM” denotes data collapse performed with the Dirac semi-metal initial state
(the lower set of curves in d); the legend “FM” denotes data collapse performed with the ferromagnetic initial state (the upper
set of curves in d). b, Reduced χ2

ν of the data collapse versus
(
τL−z)

min
. c, Distribution of the fitted ηϕ obtained from 1000

resamplings with
(
τL−z)

min
= 0.3. The results are ηϕ = 0.36(3) with the DSM initial state and ηϕ = 0.35(3) with the FM

initial state. d, Scaling collapse of curves of the structure factor SFM versus rescaled τ at Uc. e–h, Determination of the critical
exponent ηψ. e, Fitted values of ηψ versus

(
τL−z)

min
. The legend “DSM” denotes data collapse performed with the DSM

initial state (the upper set of curves in h); the legend “FM” denotes data collapse performed with the FM initial state (the
lower set of curves in h). f, Reduced χ2

ν of the data collapse versus
(
τL−z)

min
. g, Distribution of the fitted ηψ obtained from

1000 resamplings with
(
τL−z)

min
= 0.01 for the DSM initial state and

(
τL−z)

min
= 0.1 for the FM initial state. The results

are ηψ = 0.134(3) for the DSM initial state and ηψ = 0.136(14) for the FM initial state. h, Scaling collapse of curves of the
fermion correlation Gf versus rescaled τ at Uc.

structure factor S according to the size of the error bars of the original data and then perform the data collapse analysis
again to extract ηϕ. Figure S6c presents the histogram of ηϕ obtained from 1000 resamplings, showing consistent
results between the DSM and FM initial states. By fitting the histogram with a Gaussian distribution, we obtain
the critical exponent as ηϕ = 0.36(3) for the DSM initial state and ηϕ = 0.35(3) for the FM initial state. Figure S6d
displays the rescaled data collapse using these results. The black dashed line marks τL−z = 0.3, with the region
to the right included in the scaling analysis, where curves of different system sizes collapse perfectly. The region to
the left of the dashed line is outside the scaling regime, and the deviations from scaling can be seen from the degree
of non-overlap between curves. Figure S6d also shows that the system has not yet evolved to equilibrium (which
typically requires τL−z ∼ 2–3). Nevertheless, we are able to determine the accurate ground-state critical exponents
from nonequilibrium data. Comparing Figs. S6a and S6d, for the system sizes we studied, the τL−z needed for the
convergence of ηϕ is about one order of magnitude smaller than that required for the convergence of the structure
factor S. At larger system sizes, the nonequilibrium critical region will be even broader.

The same applies to other similar data collapse figures: our data collapse analysis is only performed using data
within the defined scaling range, which appears after a microscopic nonuniversal time scale. Data points at very small
τL−z lie outside this range and are, therefore, excluded from the analysis. However, it should be emphasized that the
this is not the specific issue for the short-time scaling. Even for the more popular finite-size scaling, when the lattice
size is too small to enter the scaling region, the finite-size scaling can lose its efficacy. The boundary of this scaling
range is critical for the practical application of our method, as it dictates the minimum permissible τL−z and thus
the extent to which the sign problem can be alleviated. For this reason, we deliberately presented the crossover from
scaling violation to scaling satisfaction in these figures. This approach provides a direct visualization of the scaling-
range boundary, elucidating our rationale for selecting appropriate τL−z values and preventing the misconception
that τL−z can be chosen arbitrarily small. We explicitly mark the scaling range in these figures with dash lines.



From the above analysis procedure, it is clear that determining critical points and critical exponents using nonequi-
librium scaling is highly controllable in terms of accuracy. We can assess the accuracy not only by examining the
asymptotic convergence and the quality of the data collapse, but more importantly, by the fact that nonequilibrium
evolutions from different initial states are governed by the same ground-state critical exponents. The consistency of
the critical points and critical exponents obtained with different initial states is smoking gun evidence that our results
are sufficiently accurate and self-consistent. This is a significant advantage of the nonequilibrium approach compared
with finite-temperature scaling or finite-size scaling in the conventional equilibrium approaches. Even in situations
where the sign problem is particularly severe and prevents accurate results within the scaling range, the early-time
results from different initial states can still bracket a controlled range for the critical points and critical exponent.

Table S1 compares the results in the present work with those of other methods. The consistent results shown in this
table demonstrate that the method based on the short-time dynamics can accurately determine the critical properties
of the ground-state QCP with much fewer computational costs.

C. Procedure for determining the dynamical exponent z

The quantum phase transitions studied in this work fall into the Dirac QCP universality class, for which the
dynamical exponent is known to be z = 1. However, applying this method to systems with an unknown dynamical
exponent requires a self-consistent treatment, as both z and the critical point should be determined together. To
address this, we introduce a general procedure for extracting z without prior knowledge of the critical point. We
then demonstrate the efficacy of this procedure by applying it to the single-Dirac-fermion Hubbard model, providing
a detailed analysis of the numerical results.

We introduce a new dimensionless ratio:

R0(U, τ) ≡
SFM(U, 2τ)

SFM(U, τ)
, (S19)

where SFM is the zero-momentum structure factor. Suppose we do not know the precise values of Uc and z initially;
we determine them via the following iterative steps:

Step 1. We first select a relatively large system size L, for instance, L = 23 in Fig. S7a, such that the factor

τL−z has negligible influence on the scaling of R0. According to the scaling form R0 = 2
1+ηϕ
z fR0

(gτ
1
νz ), the

crossing point of R0 curves for different τ provides an initial estimate of the critical point, Uc = 6.92(1), as
shown in Fig. S7a. Note that this estimate of Uc may not yet be highly accurate, since the finite-size effects
involving τL−z have only been approximately neglected.

Step 2. At the tentative critical point U = 6.92 obtained from Step 1, we estimate the dynamical exponent
z from the scaling form of the correlation length ratio, RFM = fR(τL

−z). In Fig. S7b-S7c, by performing
data collapse of the relaxation dynamics of RFM, we obtain an initial estimate for the dynamical exponent:
z = 1.68(7). Again, this initial estimate may still have uncertainties.

Step 3. Next, we fix the value of τL−z using the estimate z = 1.68 from Step 2 and refine the critical point
determination using the nonequilibrium method described in the main text. As shown in Fig. S7d, we obtain
an improved estimate of the critical point, Uc = 7.19(1).

Further iterations. Returning to Step 2, we re-estimate z at the updated critical point U = 7.19. As shown in
Fig. S7e-S7f, this yields an improved value z = 1.21(14). One can further iterate Steps 2 and 3 to progressively
enhance the accuracy of both Uc and z.

By repeatedly iterating Steps 2 and 3, the estimates for both Uc and z converge towards stable values. In Fig. S7,
after three rounds of iterations, we obtain final estimates of Uc = 7.23(1) and z = 1.07(9), which are consistent within
error bars with the result Uc = 7.220(37) presented in the main text and the known Dirac QCP value of z = 1.

This procedure can also be generally applied to other models and different types of QCP, even when both the
location of the critical point and the value of z are initially unknown.

S3. MORE DETAILS FOR THE SPINLESS t-V MODEL

A. Sign problem behaviors

As shown in Fig. S8, for both DSM initial state and CDW initial state, the average sign in the short-time stage is
close to one, indicating the sign problem is very weak. In particular, for τ = 0.3Lz, as shown in the insets of Fig. S8,
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FIG. S7. Determining the critical point Uc and the dynamical exponent z for the single-Dirac-fermion Hubbard
model. a, Curves of dimensionless ratio R0(U, τ) ≡ SFM(U, 2τ)/SFM(U, τ) versus U at different τ . The crossing point gives an
initial estimate of the critical point Uc = 6.92(1). b, Relaxation dynamics of the correlation length ratio RFM at U = 6.92. c,
Data collapse of b yields an initial estimate of the dynamical exponent z = 1.68(7). d, By fixing τ = 1

8
L1.68, the crossing point

of RFM versus U curves gives an improved estimate of the critical point Uc = 7.19(1). e, Relaxation dynamics of the correlation
length ratio RFM at U = 7.19. f, Data collapse of e yields an improved estimate of the dynamical exponent z = 1.21(14). g,
By fixing τ = 1

4
L1.21, the crossing point of RFM versus U curves gives an improved estimate of the critical point Uc = 7.23(1).

h, Relaxation dynamics of the correlation length ratio RFM at U = 7.23. i, Data collapse of e yields an improved estimate of
the dynamical exponent z = 1.07(9).

the system almost remains sign-free near the critical point Vc = 1.35(1) determined in the main text.

Incidentally, Fig. S8 shows that the decay rate of ⟨sign⟩ does not monotonically change with the system size L. In
some cases, a larger system size L results in a weaker sign problem. Such phenomena have also been reported in the
equilibrium projector QMC study (62) and finite-temperature DQMC (52).

B. Verification of the QCP and critical exponents

For this model, the ordered phase is the charge density wave (CDW) state, for which the structure factor SCDW

can be defined as:

SCDW(k) ≡ 1

L2d

∑
i,j

eik·(ri−rj)⟨mimj⟩, (S20)
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FIG. S8. Evolution of average sign at the QCP (inset shows ⟨sign⟩ versus V near the QCP for τ = 0.3Lz). a,
Evolution from the DSM initial state. b, Evolution from the CDW initial state.

where the local order operator is mi ≡ 1
2 (ni,A − ni,B), which represents the difference in particle number density

between the two sublattices in a unit cell. The associated correlation length ratio RCDW is defined as:

RCDW ≡ 1− SCDW(k = ∆k)

SCDW(k = 0)
. (S21)

The fermion correlation Gf(k) is defined similarly to Eq. (S13):

Gf(k) ≡
1

L2

∑
ij

eik(ri−rj) ⟨c†i,Acj,B⟩ . (S22)

Here, the sublattice indices A and B function as Dirac spinor indices. In the main text and figures of data, we
abbreviate SCDW ≡ SCDW(k = 0) and Gf ≡ Gf(k = K+∆k), where K =

(
± 4π

3 , 0
)
represents the momentum at the

Dirac points.

a b

FIG. S9. Determination of the critical point and 1/ν with DSM initial state. a, At τ = 0.3Lz, curves of RCDW versus
V for different sizes intersect at Vc = 1.37(2). b, Data collapse of curves of RCDW versus rescaled (V − Vc) with ν = 0.79(5).

In Fig. 2 of the main text, we showed the results of determination of critical properties via the short-time dynamics
from the ordered CDW initial state. In contrast, here we show consistent results can also be obtained from the DSM
initial state.

Fig. S9 illustrates the correlation length ratio RCDW as a function of interaction strength V at τ = 0.3Lz. We fit
the data in Fig. S9a using the scaling form in Eq. S15, determining the intersection point of the curves for different
sizes as Vc = 1.37(2) and the scaling collapse exponent as ν = 0.79(5). These results are close to those obtained by
equilibrium methods (59, 60) and the short-time dynamics with ordered CDW initial state discussed in the main text.
Fig. S10 shows the relaxation dynamics of SCDW = SCDW(k = 0) and Gf = Gf(k = K+∆k) starting from the DSM
initial state. Their scaling behavior is described by Eq. (S16) and Eq. (S17). According to the scaling collapse of the
evolution of SCDW in Fig. S10a-S10b, one finds ηϕ = 0.44(2). In addition, from the scaling collapse of the evolution
of Gf in Fig. S10c-S10d, we obtain ηψ = 0.072(4). The value of ηϕ is close to that obtained by the equilibrium
methods (59, 60) and the short-time dynamics with ordered CDW initial state discussed in the main text; while the
value of ηψ is close to the FRG result (58), and also consistent with that obtained from the CDW initial state shown
in the main text. Consequently, the results of critical properties in the t-V model further demonstrate the efficiency
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FIG. S10. Relaxation dynamics at QCP with DSM initial state in spinless t-V model. a-b, Curves of SCDW ≡
SCDW(k = 0) versus τ for different sizes before and after rescaling. c-d, Curves of Gf ≡ Gf(k = K +∆k) versus τ before and
after rescaling. Data collapse in the relaxation dynamics shows ηϕ = 0.44(2) and ηψ = 0.072(4).

and accuracy of our method. More crucially, for the first time, through our method we achieve the reliable result of
fermionic anomalous dimension ηψ for the QCP in the spinless t-V model by unbiased QMC simulation, as shown in
Table S2.

TABLE S2. Comparison of critical properties for the spinless t-V model calculated by different methods. The
method used in this work is the nonequilibrium short-time PQMC.

Methods Uc ν ηϕ ηψ

This work (from CDW, τ = 0.3Lz) 1.35(1) 0.77(12) 0.49(5) 0.073(4)
This work (from DSM, τ = 0.3Lz) 1.37(2) 0.79(5) 0.44(2) 0.072(4)
Majorana QMC (equilibrium) (60) 1.355(1) 0.77(2) 0.45(2) -
Continuous-time QMC (equilibrium) (59) 1.356(1) 0.80(3) 0.302(7) -
FRG (58) - 0.929 0.602 0.069

S4. MORE DETAILS FOR THE SU(3) HUBBARD MODEL

A. SU(3) algebra

The SU(3) Hubbard model with staggered flux is invariant under SU(3) transformations in the flavor space of
fermions. Here we give a brief review on the SU(3) algebra.

The generators of the SU(3) group are represented by the well-known Gell-Mann matrices. Below are the eight
Gell-Mann matrices, corresponding to the generators of SU(3) group:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 ,

λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =

1/
√
3 0 0

0 1/
√
3 0

0 0 −2/
√
3

 .

(S23)

Note that only λ8 is full rank, the other seven are not. That is to say, only the order associated with λ8 can gap out
all flavors of fermions.

The Lie algebra structure of the SU(3) group is determined by the commutation relations of its generators. The
commutation relations between the generators of the SU(3) group are listed as follows:

[λa, λb] = 2i
∑
c

fabcλc, (S24)



where fabc are the structure constants, specifically:

f123 = 1, (S25)

f147 = f246 = f257 = f345 =
1

2
, (S26)

f156 = f367 = −1

2
, (S27)

f458 = f678 =

√
3

2
. (S28)

These commutation relations will determine the manifold shape of the ground-state degeneracy space of the ordered
phase, which we will further analyze with numerical evidence in the subsequent sections.

B. Mean-field analyses

a

b

λ

DSM

8-AFM

FIG. S11. Mean-field results for the λ8-AFM order. a, For ϕ = 0.1π, L = 42, a DSM-AFM transition in the mean-field
approximation is seen at U = 3.637(5). b, Mean-field phase diagram with L = 42.

To qualitatively understand the salient features of ground-state phase diagram and the dominant symmetry spon-
taneous breaking ordering in the SU(3) Hubbard model, we first perform a mean-field analysis. We rewrite the
interaction term in the following form and apply the mean-field approximation:

U

2

∑
i

(∑
α

niα − 3

2

)2

=
U

2

∑
i

∑
α,α′

niαniα′ + const.

= − U

4

∑
i

∑
α,α′

(niα − niα′)
2
+ const.

= − 3U

16

∑
i

∑
n

(
c†iλnci

)2
+ const.

≈ − 3U

16

∑
n

⟨mλn-AFM⟩
∑
i

(−1)ic†iλnci + const. ,

(S29)



where c†i ≡
(
c†i1 c†i2 c†i3

)
, and λn=(λ1, λ2, . . . , λ8) are the eight Gell-Mann matrices. The mean-field order parameter

is defined as

⟨mλn-AFM⟩ ≡ 1

L2

∑
i

(−1)i ⟨c†iλnci⟩ (S30)

After applying the mean-field approximation, the Hamiltonian is entirely expressed as a quadratic form of fermionic
operators and can be solved for the ground state using exact diagonalization. The problem is then simply reduced to
a self-consistent calculation of the order parameter {mλn-AFM}. Fig. S11a shows the variation of the order parameter
mλ8-AFM with interaction strength U calculated using the mean-field method. When the interaction is strong,mλ8-AFM

starts to increase with U , showing clear characteristics of a continuous phase transition. We control different magnetic
flux ϕ to find the corresponding phase boundary U , as shown in the mean-field phase diagram in Fig. S11b.
We can understand why the λ8-AFM order is preferred by examining the ground state energy of the system.

Consider placing the eight different order parameter operators in the same external field h:

Hsat
n = −h

∑
i

(−1)ic†iλnci, (S31)

whose ground state corresponds to the saturated λn-AFM ordered state. At half-filling, the ground state energy of
Hsat

8 (h) is − 2√
3
hL2. The energy gap at half-filling, between the ground state of Hsat

8 (h) and the first excited state

of Hsat
8 (h), is a finite value 2√

3
h. For Hsat

n̸=8(h), the ground state energy is −hL2 and the energy gap is 0. In other

words, even considering the saturated ordered state, only the λ8-AFM order can open a gap in Dirac fermions, while
other types of λn-AFM cannot.
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FIG. S12. Mean-field ground state energy per site at half-filling of different types of λn-AFM. For the mean-field
calculation with ϕ = 0.1, L = 42, the ground state energy of the λ8-AFM mean-field Hamiltonian is lower than that of other
types of Hamiltonians.

Next, we calculate the mean-field ground-state energy for different λn-AFM orders. From Fig. S12, we find that
λ8-AFM mean-field states have lower ground-state energy than other types of antiferromagnetic orders in the whole
interaction regime of the ordered phases. Thus, from a mean-field perspective, the system favors the λ8-AFM order.

C. Phase boundary and critical exponents

Here, we perform QMC simulation through short-time relaxation to systematically study the phase boundary and
critical properties of the quantum phase transition. To determine the phase boundary of the SU(3) Hubbard model
with staggered flux, we compute the structure factor and correlation length ratio. For the λ8-AFM order, the structure
factor is defined as:

Sλ8-AFM(k) =
1

L2d

∑
i,j

eik·(ri−rj)(−1)i+j ⟨c†iλ8cic
†
jλ8cj⟩ , (S32)

The associated correlation length ratio is defined as

Rλ8-AFM ≡ 1− Sλ8-AFM(k = ∆k)

Sλ8-AFM(k = 0)
. (S33)



The fermion correlation Gf(k) is defined the same as Eq. (S22):

Gf(k) ≡
1

L2

∑
ij

eik(ri−rj) ⟨c†i,Acj,B⟩ , (S34)

where A,B represent two inequivalent sublattices in a square lattice with staggered flux. In the main text and data
figures, unless otherwise specified, we omit the momentum variables and denote Sλ8-AFM ≡ Sλ8-AFM(k = 0) and
Gf ≡ Gf(k = K+∆k), where K =

(
±π

2 ,±
π
2

)
represents the momentum at the Dirac points.

a b

c d

FIG. S13. Curves of Rλ8-AFM versus U for different sizes with λ8-AFM initial state at τ = 0.25Lz. a-b, For
ϕ = 0.05π, the fitted critical point is Uc = 0.347(4), with the critical exponent 1/ν = 0.67(1). c-d, For ϕ = 0.1π, the fitted
critical point is Uc = 2.0(3), with 1/ν = 0.58(7).

To identify phase boundary between the DSM phase and the λ8-AFM phase, we prepare a λ8-AFM initial state and
calculate the critical point for fixed ϕ by the method of short-time dynamics. For fixed τL−z = 0.25. We calculate
the critical point for ϕ = 0.05π, ϕ = 0.075π and 0.1π by the intersection points of curves of Rλ8-AFM versus U for
different L. As shown in Fig. S13, critical points are Uc = 0.347(4) for ϕ = 0.05π, Uc = 2.0(3) for ϕ = 0.1π, and
Uc = 1.10(5) for ϕ = 0.075π as shown in the main text.

Here, to further confirm the λ8-AFM is the dominant ordering, we also compute the correlation length ratio for
other quantities. We find that there is no crossing in the curves of Rλn-AFM for the AFM orders defined by λ1 to λ7
versus U , as shown in Fig. S14. The results of the correlation length ratio decrease with L, demonstrating the absence
of long-range order. Hence, the λ8-AFM is the dominant ordering, and other AFM orders are all short-range in the
half-filled SU(3) Hubbard model with staggered flux.

Moreover, scaling collapse for the curves of Rλ8-AFM versus rescaled (U − Uc) gives the value of 1/ν. Accordingly,
we obtain 1/ν = 0.67(1) and 1/ν = 0.58(7) for ϕ = 0.05π and ϕ = 0.1π, respectively. Combining 1/ν = 0.68(5) with
ϕ = 0.075π shown in the main text, we find that the values of 1/ν are consistent with each other within error bar,
showing the universality of the quantum phase transition between DSM and λ8-AFM ordered phase.

To determine the anomalous dimensions ηϕ and ηψ of the bosonic field and the fermionic field we study the relaxation
dynamics of the structure factor Sλ8-AFM = Sλ8-AFM(k = 0) and the fermion correlation Gf = Gf(k = K + ∆k) at
the critical point. The curves before and after rescaling are shown in Figs. S15 and S16 and Fig. 3 in the main
text for different ϕ. The critical exponents determined above are summarized in Table S3, from which we find that
the anomalous dimensions for different ϕ are consistent with each other within error bar, further confirming the
universality of the phase transition.



a b c

d e f g

FIG. S14. Correlation length ratios for λ1-AFM to λ7-AFM versus U for different sizes with λ8-AFM initial
state at τ = 0.25Lz, ϕ = 0.075π. There is no crossing point in the curves of Rλn-AFM versus U .
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FIG. S15. Relaxation dynamics at the QCP ϕ = 0.05π, U = 0.347(4) with λ8-AFM initial state in SU(3) Hubbard
model. a-b, Curves of S versus τ for different sizes before and after rescaling. c-d, Curves of G versus τ before and after
rescaling. Data collapse in the relaxation dynamics shows ηϕ = 0.51(3) and ηψ = 0.16(2).
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FIG. S16. Relaxation dynamics at the QCP ϕ = 0.1π, U = 2.0(3) with λ8-AFM initial state in SU(3) Hubbard
model. a-b, Curves of S versus τ for different sizes before and after rescaling. c-d, Curves of G versus τ before and after
rescaling. Data collapse in the relaxation dynamics shows ηϕ = 0.58(10) and ηψ = 0.16(3).



TABLE S3. Critical properties for the SU(3) Hubbard model probed under different staggered flux ϕ.

ϕ Uc ν−1 ηϕ ηψ

0.05π 0.347(4) 0.67(1) 0.51(3) 0.16(2)
0.075π 1.10(5) 0.68(5) 0.55(5) 0.15(3)
0.1π 2.0(3) 0.58(7) 0.58(10) 0.16(3)

D. The new universality class

In three-dimensional classical systems or 2+1 dimensional quantum systems, the most typical O(N) universality
classes widely describe a variety of important phase transitions, such as the gas-liquid transition of simple gases, the
superfluid transition of liquid helium, and the Heisenberg transition of ferromagnets. Specifically, the N = 1 case is
referred to as the Ising universality class, N = 2 as the XY universality class, and N = 3 as the Heisenberg universality
class. Their critical behaviors can be simply described by purely bosonic ϕ4 theories with O(N) symmetries.

When the boson order parameter fields are coupled to Dirac fermions, the critical properties are significantly
modified by the gapless fermion fluctuations, which leads to the definition of the “chiral versions” of the above
universality classes (73), namely the O(Nb) universality classes. To avoid confusion, we here use N to denote the
dimension of the classical order parameter, Nb to denote the dimension of the bosonic order parameter, and Nf to
denote the number of fermion flavors. For example, quantum phase transitions with a Z2 charge-density-wave order
parameter belong to the chiral Ising universality class; those with an O(2), or equivalently U(1), superconducting
order parameter belong to the chiral XY universality class; and those with an O(3) antiferromagnetic order parameter
belong to the chiral Heisenberg universality class. The corresponding low-energy effective field theories at criticality
are obtained by coupling the ϕ4 bosonic theory of the order parameter to chiral fermion fields through Yukawa terms,
and can generally be written as

L = tr
(
ψ̄ /∂ψ

)
+ g tr

(
ψ̄Φψ

)
+ tr

(
(∂µΦ)

2
)
+ r tr

(
Φ2
)
+ λ

(
tr(Φ2)

)2
, (S35)

where ψ is the fermion spinor field, and tr denotes the trace over the Nf flavors of chiral fermions with SU(Nf)

symmetry. The operator Φ =
∑Nb

i=1 ϕiLi spans an Nb-dimensional linear representation of the SU(Nf) algebra, with
Nb linearly independent bosonic components, and the Nf-dimensional matrices Li form an orthogonal basis of this

representation, such that tr(Φ2) =
∑Nb

i=1 ϕ
2
i . This theory is the well-known Gross-Neveu-Yukawa theory. Therefore,

these chiral O(Nb) universality classes are collectively referred to as the Gross-Neveu universality classes. Their
order parameters correspond to the Nb-dimensional real linear representation of the fermionic SU(2) algebra, which
happens to carry a faithful representation of the O(Nb) group. Consequently, the bosonic fields in the theory also
possess O(Nb) symmetry, establishing a one-to-one correspondence with the usual O(N) universality classes. For
instance, for the Nb = 3 chiral Heisenberg universality class in an SU(Nf = 2) system, Eq. (S35) can be written in
the more familiar form

L = ψ̄ /∂ψ + g ψ̄
(
ϕ⃗ · σ⃗

)
ψ +

∣∣∣∂µϕ⃗∣∣∣2 + r
∣∣∣ϕ⃗∣∣∣2 + λ

∣∣∣ϕ⃗∣∣∣4 , (S36)

where ϕ⃗ = (ϕ1, ϕ2, ϕ3) is an O(3) vector and σ⃗ = (σx, σy, σz) are the Pauli matrices, forming an orthogonal basis for the
three-dimensional linear representation of the SU(2) algebra. We summarize in Table S4 the theoretical symmetries
and the vacuum manifolds (ground-state degeneracy manifolds) after spontaneous symmetry breaking corresponding
to various chiral O(Nb) universality classes.
The Gross-Neveu universality class describes the universal physics in which massless Dirac fermions acquire a mass

through spontaneous symmetry breaking. Although the known Gross-Neveu universality classes possess an O(N)
order-parameter structure, considering the intrinsic spinor nature of fermions, the Gross-Neveu universality class
should not simply be regarded as the chiral counterpart of the classical O(N) universality class. A fundamental
question of broad interest across statistical physics, condensed matter physics, and high-energy physics is whether
fermionic Gross-Neveu criticality can arise that goes beyond the O(N) counterparts.

We find that SU(Nf) Dirac fermion systems with with odd Nf offer precisely such a pathway. From the perspective
of the structure of symmetry group algebras, the key distinction between odd and even Nf lies in the fact that SU(Nf)
groups with odd Nf cannot be isomorphic to spin groups, which may allow for the emergence of “more fermionic”
universality classes, as illustrated in Fig S17. For even Nf, however, at small values of Nf, such as SU(2) and
SU(4), the groups are locally isomorphic to O(3) and O(6), respectively; while at large Nf, the system typically does
not favor breaking SU(Nf) symmetry to form spin order, but instead tends to form a valence-bond solid (81, 82).



TABLE S4. Comparison of the symmetries of different Gross-Neveu universality classes. The symmetries of the theories and
the vacuum manifolds (ground-state degeneracy manifolds) after spontaneous symmetry breaking are listed. Each chiral O(Nb)
universality class corresponds to an O(N) universality class with the same symmetries and vacuum manifold. In contrast, the
new chiral SU(3) universality class reported in our manuscript has no corresponding O(N) universality class.

Gross-Neveu classes Symmetry Vacuum manifold

chiral O(Nb)

 chiral Ising
chiral XY
chiral Heisenberg

O(Nb)

 Z2, Nb = 1
O(2), Nb = 2
O(3), Nb = 3

S0

S1

S2

chiral SU(3) SU(3)× Z2
SU(3)×Z2

SU(2)×U(1)

(
≃ CP2 × Z2

)

SU( ) with even 

Spin groups ?

SU(N )f

Nf Nf SU( ) with odd Nf Nf

FIG. S17. For odd Nf, the SU(Nf) group cannot be isomorphic to a spin group, which may give rise to new Gross-Neveu
universality classes that more directly manifest the spinor nature of fermions.

Indeed, all Gross-Neveu transitions studied so far for even Nf fall back into the conventional chiral O(Nb) universality
classes (83-88). Therefore, investigating the case of odd Nf is of fundamental importance for understanding fermionic
phase transitions.

We clearly identify the first nontrivial fermionic Gross-Neveu criticality that goes beyond the O(N) order-parameter
structures. The continuous transition from the SU(3) DSM to the λ8-AFM phase reported in our manuscript belongs
to the Gross-Neveu universality class family but does not fall into any of the known chiral Ising, chiral XY, or chiral
Heisenberg classes.

In the saturated λ8-AFM phase, two flavors of fermions (referred to as flavors 1 and 2) are localized in one
sublattice (designated as the A lattice), while the remaining flavor of fermions (referred to as flavor 3) is localized
in the other sublattice (designated as the B lattice), as illustrated in Fig. 3a of the main text. It is evident that
the Z2 symmetry between the AB sublattices is significantly broken. The diagonal λ8 generator induces a global
U(1) transformation, while the generators λ1, λ2, λ3 act solely on the subspace of flavors 1 and 2, generating a closed
SU(2) transformation that only mixes these two flavors. Since these four generators all commute with the order
parameter operator, the SU(2) × U(1) is the largest symmetry group that remains invariant under the λ8-AFM
order parameter after spontaneous symmetry breaking. The other four generators of the SU(3) group, λ4, λ5, λ6, λ7,
produce transformations that alter the direction of the AFM order parameter {mn} in a compact manifold, leading to
other λ8-AFM degenerate ground states, which are four independent Goldstone modes. All degenerate ground states
span a 4-dimensional ground state degeneracy space, and these states can be mapped one-to-one onto points on the

manifold SU(3)×Z2

SU(2)×U(1) . Under SU(3) transformations, this order parameter transforms according to the 8-dimensional

adjoint representation of SU(3) and spans the 4-dimensional SU(3)×Z2

SU(2)×U(1) manifold, which is nonlinearly embedded in

R8. SU(3) cannot be isomorphic or locally isomorphic to any other classical linear groups, which is in sharp contrast
to the cases of even Nf such as SU(2) and SU(4). Therefore, the new SU(3) antiferromagnetic order parameter we
have discovered does not have a corresponding O(Nb) order parameter. We temporarily refer to this new universality
class as the chiral SU(3) universality class. As shown in the comparison in Table S4 summarizes the differences of this
new universality class from the previously known ones in terms of symmetry and vacuum manifold. In addition to
the symmetry analysis, our QMC results also provide an unbiased numerical determination of the critical exponents
of this new universality class. In Table S5, we present a comparison of its critical exponents with those of the chiral



TABLE S5. Comparison of critical exponents for different Gross-Neveu-Yukawa universality classes in d = 2+ 1
with Nf = 6. The first row, chiral SU(3) denotes the universality class for SU(3) Dirac fermion Hubbard model, with exponents
determined from nonequilibrium PQMC.

Universality class ν−1 ηϕ ηψ

chiral SU(3) (this work) 0.68(5) 0.55(5) 0.15(3)
chiral Heisenberg (4− ϵ, 2nd order)(73) 1.478 1.023 0.058
chiral XY (4− ϵ, 2nd order)(73) 1.809 0.698 0.082
chiral Ising (4− ϵ, 2nd order)(73) 0.750 0.865 0.011
chiral Ising (FRG)(74) 0.993 0.912 0.013

ordered bosonmassive fermionmassless fermion disordered boson

disordered boson ordered boson

O(N) universality classes

Gross-Neveu universality classes

XY
Ising

Heisenberg
O(N)

chiral O(Nb)

chiral SU(3)

FIG. S18. Schematic illustration of the relationship between O(N) universality classes and Gross-Neveu universality classes.
The O(N) universality classes, including Ising, Heisenberg, and XY, describe spontaneous symmetry breaking with an O(N)
order parameter. The Gross-Neveu universality classes describe the situation where, along with spontaneous symmetry breaking
of the bosonic order parameter, massless Dirac fermions also spontaneously acquire a mass. Within the Gross-Neveu universality
classes, the traditional chiral O(N) universality classes correspond one-to-one to the O(N) universality classes, whereas the
chiral SU(3) universality class in the Gross-Neveu universality classes does not possess an O(N) order-parameter structure and
instead represents a fermion-intrinsic universality class.

Ising, chiral XY, and chiral Heisenberg universality classes, which more conclusively rules out the possibility that this
new universality class belongs to those existing universality classes.

The nontrivial new Gross-Neveu universality class we discovered represents the first minimal example of a Gross-
Neveu transition without a classical O(N) correspondence. As illustrated in Fig. S18, our results demonstrate that
the Gross-Neveu universality class encompasses a broader and nontrivial set with intrinsic fermionic characteristics.
It is highly worthwhile in the future to further investigate the low-energy effective field theory of this phase transition.
Since the bosonic field does not possess O(Nb) symmetry, its form is likely different from the previous expression in
Eq. (S35). We conjecture that it may take the following form:

L = tr
(
ψ̄ /∂ψ

)
+ g tr

(
ψ̄Φψ

)
+ tr

[
(∂µΦ)

2
]
+ r tr

(
Φ2
)
+ λ

[
tr
(
Φ2
)]2

+ a
[
tr
(
Φ3
)]2

+ c
[
tr
(
Φ2
)]4

, (S37)

where Φ =
∑Nb

i=1 ϕi
λi
2 , Nb = 8 spans the 8-dimensional adjoint representation of SU(3). Compared with Eq. (S35),

the marginal term a
[
tr
(
Φ3
)]2

is introduced to reduce the SO(8) symmetry of the bosonic field to SU(3) × Z2

symmetry, while the irrelevant term c
[
tr
(
Φ2
)]4

with c > 0 is also introduced to ensure vacuum stability. Due to

the SU(3) algebra identity tr(Φ3) = 3 detΦ, only the ϕ8 component of the order parameter along the λ8 direction



with full rank contributes a nonzero value to
[
tr
(
Φ3
)]2

. Therefore, when a < 0, the SU(3)-symmetric bosonic field
tends to spontaneously break toward the λ8 direction. This is very different from the O(N) symmetry breaking
triggered by r < 0 in the ϕ4 theory. Whether such a Gross-Neveu-Yukawa theory can capture the new universality
class we discovered (for example, yielding critical exponents consistent with our numerical results) remains an open
question for future study. Additionally, such an order parameter that carries an SU(3) bilinear representation rather
than an O(Nb) linear representation may also be constructed through a recent theoretical framework with tensorial
criticality (89-91), which is also worth exploring.

E. Sign problem behaviors and computational efficiency

cba

FIG. S19. The sign problem in SU(3) Hubbard model at the QCP ϕ = 0.1, U = 2.0(3). a, The average sign
with different L and τ in short-time stage. b, Comparison for the average sign between short-time stage (τ = 0.25Lz) and
equilibrium stage (τ = 1.5Lz). c, Efficiency gain of QMC with the short-time method (τ = 0.25Lz) compared to equilibrium
QMC (τ = 1.5Lz) for different sizes L.

For this model, we set the parameters at the critical point U = 2.0(3), ϕ = 0.1π. The average sign as a function of
imaginary time τ and size L is shown in Fig. S19a. The sign problem for this model is significantly more severe than
for the previous two models. For τ = 0.25Lz, the average sign is approximately 10−1 ∼ 10−2, meaning that compared
to the sign-problem-free case, 10 to 100 times more computational resources are needed to obtain reliable results.
From Figs. S15 and S16 and Fig. 3 in the main text, it can be seen that τ = 0.25Lz is in the nonequilibrium scaling
region controlled by the critical point. Even though the ground state is not reached, its nonequilibrium scaling still
reflects the quantum criticality of the ground state. In equilibrium QMC studies, it is typically necessary to set the
imaginary time τ to more than 1.5 times the size Lz to reach the ground state. However, evolving for such a long time,
the average sign decays to approximately 10−5 ∼ 10−6. In Fig. S19b, we compare the average sign for τ = 0.25Lz

and τ = 1.5Lz. Since the computational error (according to Eq. S8) is inversely proportional to the average sign
⟨sign⟩ (according to Eq. S8), we can measure the difference in computational efficiency by multiplying the ratio of the
average sign ⟨sign⟩ by the length of imaginary-time evolution, as follows:

Efficiency acceleration factor =

(
1/ ⟨sign⟩eq.
1/ ⟨sign⟩neq.

)2
τeq.
τneq.

, (S38)

where the nonequilibrium evolution time is τneq. = 0.25Lz, and the equilibrium evolution time is τeq. = 1.5Lz.
⟨sign⟩neq. and ⟨sign⟩eq. are their corresponding average signs, as shown in Fig. S19b. We specifically compared the
differences in computational efficiency for several system sizes, as shown in Fig. S19c. The computational resources
required by the nonequilibrium method are only a few millionths of those required by the equilibrium method, and this
efficiency improvement roughly grows exponentially with the system size. Consequently, our nonequilibrium method
enables the QMC simulation on SU(3) Hubbard model with large system size, which is not accessible in previous
unbiased numerical approaches.
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