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Finite-time scaling beyond the Kibble-Zurek
prerequisite in Dirac systems

Zhi Zeng 1,2,5, Yin-Kai Yu 1,2,3,4,5, Zhi-Xuan Li1,2,5, Zi-Xiang Li3,4 &
Shuai Yin 1,2

The conventional Kibble-Zurek mechanism and the finite-time scaling provide
universal descriptionsof thedriven critical dynamics fromgapped initial states
basedon the adiabatic-impulse scenario.Herewe investigate thedriven critical
dynamics in two-dimensional Dirac systems,which harbor semimetal andMott
insulator phases separated by the quantum critical point triggered by the
interplay between fluctuations of gapless Dirac fermions and order parameter
bosons. We find that despite the existence of the gapless initial phase, the
driven dynamics can still be capturedby the finite-time scaling form. This leads
us to propose a criterion for the validity of Kibble-Zurek mechanism with a
gapless initial state. Accordingly, our results generalize the Kibble-Zurek the-
ory to incorporate composite fluctuations and relax its requirement for a
gapped initial state to systems accommodating gapless Dirac fermionic exci-
tations. Our work not only brings fundamental perspective into the none-
quilibrium critical dynamics, but also provides an approach to fathom
quantum critical properties in fermionic systems.

Fathoming nonequilibrium universal properties near a quantum cri-
tical point (QCP) is one of the central issues in modern physics1,2.
Although the general organizing principle for the nonequilibrum
critical dynamics is still elusive, a unified framework for under-
standing the generation of topological defects after the linear
quench was proposed by Kibble in cosmological physics and then
generalized by Zurek in condensedmatter systems3,4. This celebrated
Kibble-Zurek mechanism (KZM) has aroused intensive investigations
from both theoretical and experimental aspects, exerting far-
reaching significance in both classical and quantum phase
transitions3–16. More interestingly, it was found that scaling behaviors
can also manifest themselves in the driven process17–21. As a gen-
eralization of the KZM, a finite-time scaling (FTS) theory was pro-
posed to systematically understand the full scaling properties22,23.
These full scaling forms have been verified in various systems from
numerical to experimental works11,12,20,22–29. Moreover, the KZM and
the FTS recently show their fabulous power in state preparations and

probing critical properties in fast-developing programmable quan-
tum devices11,12,28–30.

At the core of the original KZM lies the adiabatic-impulse
scenario1,2,31. According to it, a crucial prerequisite for the imple-
mentation of the KZM is the existence of a gapped initial stage,
wherein the system evolves adiabatically along the equilibrium state.
The border of this initial stage with the intrinsically nonequilibrium
impulse region gives rise to a frozen time1–4, which dominates the
critical dynamics near the critical point, yielding the FTS forms22,23.
Moreover, intriguing dynamic scaling behavior dominated by the QCP
was also found for driven dynamics from gapless initial phase to cross
the QCP in one dimensional spin systems32,33. However, the universal
criterion for the validity of KZM and FTS with a gapless initial state has
yet to be established.

The QCP occurring in strongly interacting Dirac systems, dubbed
as Dirac QCP, represents a typical class of QCP which has joint critical
fluctuations from both order parameter and gapless fermions. Studies
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of Dirac QCP stem from the research in modern high-energy physics,
such as chiral symmetry in QCD and mass generation via spontaneous
symmetry breaking34–37. From the perspectives of statistical mechanics
and condensed matter physics, the Dirac QCP also attracts enormous
attentions, particularly after the experimental realization of two-
dimensional Dirac fermions in graphene and various topological
insulators or semimetals38–40. The presence of Dirac fermions is theo-
retically revealed to tremendously enrich quantum critical properties,
rendering novel universality classes of quantum phase transition
without classical counterpart41–52.

Interesting aspects of Dirac QCP in equilibrium can suggest
interesting phenomena out of equilibrium. Dynamic scaling behaviors
were studied in QCPs that feature non-interacting Dirac fermions53–55.
However, nonequilibrium dynamics in strongly interacting Dirac QCP
is still largely unexplored. Particularly, for driven dynamics along the
gapless Dirac semimetal (DSM) phase to cross the QCP, whether the
original KZM is still applicable remains unknown. Consequently,
investigating the nonequilibrium driven dynamics in Dirac QCP has
overarching meaning in fundamental theory, as well as immediate
applications in the context of detecting and exploring fermionic QCP
in experimental platforms38–40.

However, directly tackling the real-time dynamics in two or higher
spatial dimension is largely hindered by the lack of reliable theoretical
or numerical methods. Specifically, quantumMonte Carlo (QMC) fails
as a result of the notorious sign problem56,57, while the tensor-network
method still needs tremendous improvements despite remarkable
progress in recent years58. Fortunately, scaling analysis demonstrates
that both real- and imaginary-time driven dynamics share the same
scaling form59 as elucidated in Supplementary Note 1. This inference
has been verified in various systems27,28,59, bridging the gap between
the QMC imaginary-time simulations without sign problem and the
real-time dynamics as discussed in Supplementary Note 2.

In this work, we investigate the driven critical dynamics of two
representative strongly interacting Dirac QCPs, belonging to chiral
Heisenberg and chiral Ising universality classes, respectively, via the
determinant QMC method56. By linearly varying the interaction
strength along the imaginary-time direction to cross the QCP from
both the DSM and Mott insulator phases, we uncover that the driven
process near theDiracQCP satisfies the scaling formof FTSdespite the
violation of the adiabatic-impulse scenario of the KZM due to the
existence of the gapless initial state. Furthermore, we develop a uni-
versal criterion for the validity of the KZM and FTS with the gapless
initial state. In addition, our numerical simulation achieves the critical
exponents of theDiracQCP,whose values obtained inprevious studies
on equilibrium properties are still under debate. Through the gen-
eralization of quantum driven critical dynamics to strongly interacting
DiracQCP, our study notonly leads to an extension of the fundamental
theory of KZM and FTS, but also contributes a feasible approach to
investigate the fermionic quantum critical phenomena in realistic
platform such as quantum materials and devices.

RESULTS
Dynamics in chiral Heisenberg criticality
A typical model hosting Dirac QCP belonging to chiral Heisenberg
universality class is the Hubbard model on the half-filled honeycomb
lattice with the Hamiltonian42,46–49

H = � t
X
hiji, σ

cyiσcjσ +U
X
i

ni" � 1
2

� �
ni# �

1
2

� �
, ð1Þ

in which cyiσ (cjσ) represents the creation (annihilation) operator of
electrons with spin σ, niσ � cyiσciσ is the electron number operator, t is
the hopping amplitude between nearest neighbor sites and set as the
energy unit in the following, and U is the strength of the on-site
repulsive interaction. The model is absent from sign problem in QMC

simulation as discussed in Supplementary Note 2. As shown in Fig. 1, a
critical pointUc ≈ 3.85 separates twophases49. WhenU >Uc, the system
is in the antiferromagnetic (AFM) Mott insulator phase in which
fermions acquire a mass originating from spontaneous symmetry
breaking characterized by the finite AFM order parameter
m2 =

P
i, jηiηjhSzi Szj i=L2d with Szi � ð1=2Þcyi σzci, c ≡ (c↑, c↓), and ηi = ± 1

for i ∈ A(B) sublattice42,48,49. Here, L is the linear size of the system and
d = 2 is the spatial dimension. In this phase, the transverse spin
excitation is massless due to the presence of the Goldstone modes. In
contrast, when U < Uc, the system is in the DSM phase with four-
component massless Dirac fermion (Nf = 2). At Uc, both Dirac fermions
and AFM order parameter bosons are gapless, yielding the Gross-
Neveu QCP belonging to chiral Heisenberg universality class42,46–49.

Here we begin to explore whether the FTS forms are still applic-
able in the driven dynamics of this Dirac QCP with composite critical
fluctuations from gapless initial states. First we study the driven
dynamics by varying U with imaginary time τ as U =U0 + Rτ from the
DSM initial state with U0 = 0, as illustrated in Fig. 1. We denote the
distance to the critical point as g (here g =U −Uc). The smallest lattice
size is chosen as L = 18 to eliminate the scaling violation induced by
small sizes. When g = 0, from Fig. 2a, we find that for large R,
m2 ∝ L−2R−0.26(1) with the exponent on R close to (2β − dν)/νr = − 0.26(2),
in which β =0.76(2) and ν = 1.02(1) are the exponents for order para-
meter and correlation length, respectively49, and r = z + 1/ν is the
scaling dimension of R. Here the dynamic exponent z equals one in the
Gross-NeveuDiracQCPowing to the Lorentz symmetry of the effective
model47. Additionally, the exponent on R is almost independent of L. In
contrast, when R is small, Fig. 2a shows that m2 tends to saturate and
the usual finite-size scaling m2 ∝ L−2β/ν is restored. To reconcile these
rescaling relations, the scaling form must satisfy

m2ðR, L, gÞ= L�dRð2β�dνÞ=νrF ðRLr , gL1=νÞ, ð2Þ

inwhichF is a non-singular scaling function and therein dimensionless
quantity gL1/ν is also included to take account of the off-critical-point
effects. Eq. (2) is consistent with the FTS in conventional bosonic
QCP24,25.

Fig. 1 | Time scales for driven critical dynamics. The quantum critical point at Uc

separates the Dirac semimetal (DSM) phase featured by the fermionic Dirac cone
(violet cone) and massive bosonic modes (golden paraboloid) from the anti-
ferromagnetic (AFM) phase featured by the massive fermionic excitation (violet
hyperbolic paraboloid) and massless bosonic modes (golden Mexican hat). The
gradient yellow background aroundUc indicates the critical region. The correlation
time scales ζ for both boson (yellow solid curve) and fermion (violet solid curve) are
finite in one phase but divergent (symbolized by “∞”) in the other phase. The
dashed line denotes the time distance ∣U − Uc∣/R to the critical point for different
driving rates. Accordingly, the prerequisite of the original KZM that a gapped initial
state should exist to protect an initial adiabatic stage, in which the transition time is
larger than the correlation time, breaks down.
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To confirm Eq. (2), we find that Eq. (2) yields the scaling form
m2ðR, LÞ= L�2β=νF 1ðRLrÞ at g =0. Here, we rescale m2 and R as m2L2β/ν

and RLr with the exponents β = 0.76(2), ν = 1.02(1)49, and z = 147 set as
input, and reveal that the rescaled curves collapse well into a single
curve, as shown in Fig. 2b, confirming Eq. (2) at g =0.

In addition, to unravel the scaling properties in the driven process
near Uc, we calculate the dependence ofm2 on g for an arbitrary fixed
RLr = 5.41 and present the results in Fig. 2c. After rescalingm2 and g by
L2β/ν and L1/ν, the curves with various L collapse into each other, as
displayed in Fig. 2d, confirming that the universal scaling behavior of
physical observable in the driven process is described by Eq. (2).

The reason for the appearance of the scaling relationm2∝ L−dR(2β−dν)/νr

is that for large R, driven induced length scale ξR ~ R−1/r is smaller than L.
Thus, the definition ofm2 indicates thatm2∝ L−dowing to the central limit
theorem. Meanwhile, the rest part of the dimension of m2 should be
borne by R, giving rise to the leading term of Eq. (2). In this case,
F ðRLr , 0Þ tends to a constant. In contrast, for small R, ξR > L, such that
the conventional finite-size scaling at equilibriumm2 ∝ L−2β/ν is recovered,
and F ðRLr , 0Þ obeys F ðRLr , 0Þ � ðRLrÞd=r�2β=νr .

Next, we turn to explore the driven dynamics starting from the
Mott insulator initial state and U is changed as U =U0 − Rτ with
U0 = 11.85. This Mott insulator state has the AFM order with trans-
verse gapless modes. For large R, Fig. 3a shows that m2 ∝ R0.73(2)

with the exponent close to 2β/νr = 0.75(2)49 and is nearly indepen-
dent of L. Combining this scaling relation with the usual finite-size
scaling m2 ∝ L−2β/ν which is restored for small R, the scaling form

should obey

m2ðR, L, gÞ=R2β=νrGðRLr , gL1=νÞ, ð3Þ

where G is the scaling function and g is also included therein. Eq. (3) is
also accordant with the conventional FTSwith ordered initial state22–24.

We rescale curves ofm2 versusR for various L at g =0 according to
the scaling function m2ðR, LÞ= L�2β=νG1ðRLr Þ and find that the rescaled
curves collapsewell, which confirms Eq. (3) at g =0. Note that in Fig. 3b
slight deviation appears in the largeR region,whichmay stem from the
influence of high-energy modes caused by fast driving. Furthermore,
Fig. 3c shows the curves of m2 versus g for an arbitrary fixed RLr. The
rescaled results (gL1/ν, m2L2β/ν) for various L collapse into a single
smooth curve, as displayed in Fig. 3d, confirming that the driven
process from AFM initial state is described by Eq. (3).

The appearance ofm2 ∝ R2β/νr reflects the fact that when ξR < L the
initial ordered magnetization domain is maintained. In this case,
GðRLr , 0Þ in Eq. (3) tends to a constant and G1ðRLrÞ � ðRLrÞ2β=νr . In
contrast, for smallRwith ξR > L, the usualfinite-size scalingm2∝ L−2β/ν is
recovered, indicating thatGðRLr , 0Þ � ðRLrÞ�2β=νr andG1ðRLr Þ tends to a
constant.

Dynamics in chiral Ising criticality
To further verify the FTS in Dirac systems, we also explore the driven
dynamics of Dirac QCP belonging to chiral Ising universality class,
which is realized in the interacting spinless fermion model on the

Fig. 2 | Driven dynamics from theDSMphase ofmodel (1). a, b are log-log plots
of m2 versus R for different L driven to Uc = 3.85 before and after rescaling.
Inset in (a) shows m2 ∝ L−2 for R = 0.3 (dash-dotted line). For large R, power
fitting for L = 24 (black solid line) shows m2 ∝ R−0.26(1) with the exponent close

to (2β − dν)/νr = − 0.26(2) (dash line) from ref. 49. c, d are curves of m2

versus g for fixed RLr = 5.41 and different L before and after rescaling. The
arrow indicates the driving direction. The errorbars represent one standard
deviation.
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half-filled honeycomb lattice with the Hamiltonian50,51,60:

H = � t
X
hiji

cyi cj +V
X
hiji

ni �
1
2

� �
nj �

1
2

� �
, ð4Þ

where V measures the nearest-neighbor interaction. The model is
amendable to sign-problem-free QMC simulation as discussed in
Supplementary Note 261–63. It was shown that the ground state
undergoes a continuous quantum phase transition at Vc ≈ 1.355 from
the DSM phase to the charge-density-wave (CDW) insulator phase,
characterized by the order parameter m2 ≡ ∑i,jηiηj〈(ni − 1/2)(nj − 1/2)〉/
L2dwith ηi = ± 1 for i ∈ A(B) sublattice50,51,60. AtV = Vc, both fermion and
boson degrees of freedom are gapless, similar tomodel (1). However, a
difference is that in the CDW phase, the bosonic fluctuation is fully
gapped owing to the discrete symmetry breaking.

For the driven dynamics under changing V as V =V0 + Rτ from the
DSM initial state with V0 = 0, Figure 4a shows that at g = 0, for large R,
m2 ∝ L−2R−0.336(4) with the exponent on R close to (2β − dν)/νr = − 0.31(4)
in which β =0.47(4), ν = 0.74(4)60, and z = 164; whereas m2 ∝ L−2β/ν for
small R, similar to the results in model (1). In addition, we find the
rescaled curves ofm2 versus R and g collapse well, as shown in Fig. 4b,
d, confirming that Eq. (2) gives a universal description on the driven
critical dynamics from the DSM initial state.

For the driven dynamics under changing V as V = V0 − Rτ from the
CDW initial state with V0 = 2.5, Fig. 5a shows that at g = 0, for large R,
m2 ∝ R0.496(6) with the exponent close to 2β/νr =0.54(4)60, whereas

m2 ∝ L−2β/ν for small R, similar to the case of chiral Heisenberg uni-
versality class. Moreover, Eq. (3) is verified by the data collapse of the
curves (RLr, m2L−2β/ν) at fixed g =0 and (gL1/ν, m2L−2β/ν) for an arbitrary
RLr, as shown in Fig. 5b, d. Consequently, Eq. (3) provides a universal
description on the driven dynamics from ordered initial states,
regardless of whether or not initial gapless bosonic modes exist.

General scaling theory
The above numerical results remarkably demonstrate that the FTS
forms are applicable despite the existence of gapless initial states
which can violate the adiabatic-impulse scenario of the original KZM.
Thus, it is imperative to develop a universal scaling scenario.

In driven dynamics starting from a ground state far from the cri-
tical point, the driving rate R uniquely quantifies the extent of depar-
ture from the equilibrium state. Within the original KZM, the existence
of an initial adiabatic stage stabilized by a finite gap can remarkably
suppress excitations triggered by external driving1,2,31. This leads to the
fact that the excitations are predominantly generated near the QCP.
Consequently, the dimension of the driving rate R, namely r, is exclu-
sively determined by the critical exponents of the QCP, forming the
basis for the original KZM and FTS.

In contrast, at first sight, for the driven dynamics evolving along a
gapless initial stage and then crossing the QCP, the excitations can also
be copiously produced in the initial gapless phase and subsequently
brought into the critical region to influence the nonequilibrium prop-
erties near the QCP. Accordingly, we can formulate a scale

Fig. 3 |Drivendynamics fromtheAFMphaseofmodel (1). a,b are log-logplots of
m2 versus R for different L driven toUc = 3.85 before and after rescaling. For large R,
power fitting (black solid line) shows m2 ∝ R0.73(2) with the exponent close to

2β/νr = 0.75(2) (dash line) from ref. 49. c, d are curves of m2 versus g for fixed
RLr = 41.5 anddifferent Lbefore and after rescaling. The arrow indicates the driving
direction. The errorbars represent one standard deviation.
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transformation underwhich amacroscopic quantityQ should transform
as

QðR, g, L,Q0;R
0Þ=b�κQðRbr , gb1=ν , Lb�1,Q0b

κ0 ;R0br 0 Þ, ð5Þ

in which b (b > 1) is the rescaling factor, κ is the scaling dimension ofQ,
and R0 along with its exponent r0 characterizes the contribution from
the excitations generated in the gapless initial stage. Note that
although the value of R0 is equal to that of R, in general, they can have
different scaling dimensions. Specifically, r0 is dictated by the expo-
nent of the gapless phase; whereas r is determined by the exponent of
theQCP. In addition, in Eq. (5),Q0 and κ0 represent the initial value ofQ
and its scaling dimension, respectively. From Eq. (5), one finds that
when r0 < r, the nonequilibriumdynamics across theQCP is governedR
with dimension r and the usual KZM and FTS can be restored.

Moreover, in practice, the condition can be further refined. Since
the gapless phase can be viewed as a continuous set of critical points
belonging to the same universality class, its stability requires that the
tuning parameterΛ [for example,UorV in theDSMphase inmodels (1)
and (4), respectively] must be either irrelevant or at most marginally
irrelevant. More precisely, under a scale transformation with a coarse
graining factor b (b > 1), Λ changes as Λ → Λbλ with λ≤ 0. Applying this
scaling to a change in the tuning parameter, ΔΛ=R0Δt, we obtain
ΔΛbλ =R0br 0Δtb�z0 . This leads to the relation r0 = λ+ z0, where z0 is the
dynamic exponent of the gapless phase (which may differ from z

characterizing QCP). Hence, r0 ≤ z0 because λ ≤ 0, with equality holding
for the marginally irrelevant case.

Consequently, we arrive at the precondition under which the
usual KZM and FTS can be recovered for the gapless initial state,

z0 < r, r = z +
1
ν
: ð6Þ

Should Eq. (6) be met, the preponderant nonequilibrium universal
behaviors will originate from the critical region of QCP because r0 < r,
and Rwith exponent rwill govern the dynamic scaling behaviors, while
the variableR0 canbe neglected in Eq. (5). To illustrate this, we consider
the scaling ofm2. By setting the coarse-graining factor to b = R−1/r in Eq.
(5), we can transform Eq. (5) into,

m2ðR, g, L,m2
0Þ=m2

0R
2β=νr�x0=rKðgR�1=νr , LR1=rÞ, ð7Þ

The scaling function KðgR�1=νr , LR1=rÞ can be equivalently rewritten as
K1ðgLr , LR1=rÞ. For the ordered initial state,m2

0 approaches a saturation
value, and x0 = 0. In this case, Eq. (7) reduces to Eq. (3), thus recovering
the expected scaling. In contrast, for the DSM initial state, since
m2

0 / L�d , x0 = d and Eq. (7) recovers Eq. (2).
Now we apply the general discussion elaborated above to the

models we are currently dealing with.
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Fig. 4 | Drivendynamics from theDSMphase ofmodel (4). a, b are log-log plots
of m2 versus R for different L driven to Vc = 1.355 before and after rescaling.
Inset in (a) shows m2 ∝ L−2 for R = 0.3 (dash-dotted line). For large R, power
fitting for L = 24 (black solid line) shows m2 ∝ R−0.336(4) with the exponent close

to (2β − dν)/νr = − 0.31(4) (dash line) from ref. 60. c, d are curves of m2 versus
g for fixed RLr = 63.34 and different L before and after rescaling. The arrow
indicates the driving direction. The errorbars represent one standard
deviation.
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• For driven dynamics from the DSM phase, as illustrated in Fig. 1,
the DSM phase is characterized by low-energy physics dominated
by the fermion fluctuations exhibiting linear dispersion,
Ek = vf jkjz

0
, where z0 = 1 and vf represents the fermion velocity.

Given that in the DSM phase z0 = 1, Eq. (6) is apparently fulfilled.
Consequently, the nonequilibrium dynamics across the QCP
should be described by the standard FTS form.

• For driven dynamics from the AFM phase, in the AFM phase, the
Dirac fermions feature a gap related to the amplitude of the AFM
order parameter, and the low-energy excitations are predomi-
nantly attributed to bosonic spin waves, which correspond to the
gapless Goldstone modes due to the broken spin rotation
symmetry. The AFM spin wave has the linear dispersion as
Ek = vbjkjz

0
, where z0 = 1 and vb denotes the spin wave velocity.

Again, Eq. (6) is satisfied and the standard FTS form should be
recovered.

Physically, in both DSM and AFM phases, different interac-
tion strengths just yield different low-energy excitation velocity,
but do not change the linear form of low-energy dispersion65.
Therefore, the interaction strength are marginally irrelevant and
the dimension of R0 reduces to z0 = 1. In contrast, in the critical
region of the QCP, with the onset of ordering of the bosonic
order parameter fields, both the bosonic and fermionic degrees
of freedom evolve into the low-energy excitations. Apart from the

remarkable proliferation of low-energy modes, the mutual inter-
actions among them trigger intrinsic changes in the scaling
dimensions of both Dirac fermion and order parameter, rather
than merely adjusting vf and vb. In this case, U in model (1) [or V in
model (4)] becomes relevant and (U − Uc) in model (1) [or (V − Vc)
in model (4)] has the dimension of 1/ν. Consequently, R with
dimension r is more relevant than R0.

DISCUSSION
In summary, we investigate the driven dynamics of QCP in two
representative interacting Dirac-fermion systems, belonging to chiral
Heisenberg and chiral Ising universality classes, respectively, through
sign-problem-freeQMC simulation. Driving the system frombothDSM
and Mott insulator phases as the initial states, we discover varieties of
interesting nonequilibrium scaling behaviors. Furthermore, we con-
firm that these scaling behaviors can be unified by the full scaling form
of the FTS theory.

From the theoretical perspectives, through this work we not
only successfully generalize the KZM and FTS to critical systems with
joint fluctuations of gapless fermions and bosons, but also propose a
general criterion for the validity of the KZM and FTS with a gapless
initial state. The general criterion, Eq. (6), can extend well beyond the
scope of Dirac QCP. For instance, it was found that the density of
excitations nex in the driven dynamics of the one dimensional
spin chain with dispersion Ek /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 + k4

p
shows the scaling
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R, power fitting (black solid line) showsm2 ∝ R0.496(6) with the exponent close to

2β/νr =0.54(4) from ref. 60 (dash line). c, d are curves of m2 versus g for fixed
RLr = 87.97 and different L before and after rescaling. The arrow indicates the
driving direction. The errorbars represent one standard deviation.
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relation nex ∝ R1/3 under changing c linearly to cross its QCP at c = 032.
In this case, the low-energy mode of the gapless phase has the linear
dispersion with z0 = 1 and c is marginally irrelevant with zero scaling
dimension. In contrast, near the QCP, the quadratic dispersion
begins to dominate such that z = 2, and c becomes relevant with the
scaling dimension of 1/ν = 1, which can be obtained by comparing the
dimensions of c and k. Apparently, the criterion of Eq. (6) is fulfilled
and nex satisfy the KZM of the QCP, i.e., n ∝ Rd/r with d = 1 and r = 3. In
addition, Eq. (6) can also apply to the dynamic scaling in other
QCPs18,33, as discussed further in Supplementary Note 3.

From the application perspectives, we demonstrate that the
nonequilibrium scaling form is capable of determining the critical
exponents in Dirac QCP, providing an effective method to deci-
phering quantum critical properties in terms of driven dynamics. A
large discrepancy in the critical exponents of the chiral Heisenberg
universality class still exists despite extensive studies42,49. By directly
fitting the curves of m2 versus R in large R region with the power
function for both DSM and AFM initial states, as shown in Fig. 2a and
Figure 3a, respectively, we obtain (2β/νr − d/r) = −0.26(1) and
2β/νr = 0.73(2). By setting z = 1, we obtain critical exponents
ν = 0.98(4) and β = 0.72(4), which are consistent with ν = 1.02(1) and
β = 0.76(2) from ref. 49 within error-bars. The detailed derivation and
other ways to estimate critical exponents via FTS are shown in Sup-
plementary Notes 4 and 5, and the corresponding results are shown
in Supplementary Tables 1 and 2. It is important to note that equili-
brium methods often require larger system sizes and careful finite-
size scaling corrections to achieve comparable accuracy49. In con-
trast, in the framework of driven dynamics, the driven rate R con-
stitutes a new tuning parameter. At large R, the impact of finite-size
corrections is diminished, allowing for reliable critical exponent
determination with relatively small system sizes. Moreover, the
availability of diverse driving protocols with distinct FTS forms
provides a compellingmeans to confirm the robustness and accuracy
of these critical exponent determinations, as discussed further in
Supplementary Note 5.

From experimental perspectives, driven dynamics is observed in
cold-atom systems11,20. Due to recent developments in cold-atom-
based quantum simulators of fermions66–68, it is promising to detect
driven dynamics in Dirac QCP and verify the generalized KZM and FTS
as discussed in our study in these platforms. In real experiments,
thermal fluctuations will inevitably enter. Thus, the scaling form
should include TR−z/r as an additional variable in the full scaling
form26,69. Nonetheless, as T−1/z plays similar roles as the system size in
QCP, the scaling behaviors for large R are expected to be almost
independent of T, in analogy to the finite-size cases. Physically, for
large R, excitations induced by driving dominate over those induced
by thermal fluctuations and therefore contribute the main dynamic
scaling behaviors. Accordingly, it is foreseeable that the methodolo-
gical approach developed here can be used to probe the critical
properties in real experiments.

METHODS
Quantum Monte Carlo simulation of driven dynamics in
imaginary-time direction
We have explored the driven dynamics of the Hubbard model (1) and
the t-V model (4). Here, we elucidate the implementation of QMC to
simulate the imaginary-time driven dynamics.

For models (1) and (4), we linearly vary the interaction strength
U(V) with imaginary time variable τ at the rate R as

UðτÞ=U0 ±Rτ, ð8Þ

V ðτÞ=V0 ±Rτ, ð9Þ

where the + ( − ) represents driving from disordered (ordered)
initial state atU0(V0). Inour numerical simulation, fordisordered initial
state, we set U0 = 0, V0= 0, while for ordered initial state we set
U0= 11.85, V0 = 2.5 far from the critical point.

The wave function ∣ψðτÞ� obeys the imaginary-time Schrödinger
equation59

� ∂
∂τ

∣ψðτÞ�=HðτÞ∣ψðτÞ�: ð10Þ

The formal solution of Eq. (10) is given by ∣ψðτÞ�=Uðτ, 0Þ∣ψð0Þ� in
which time evolution operator

Uðτ, 0Þ=T exp �
Z τ

0
dτ0Hðτ0Þ

� �
, ð11Þ

with T being the time-ordering operator in imaginary-time direction.
For the left vector ψðτÞ�

∣= ψð0Þ�
∣Uyðτ, 0Þ with

Uyðτ, 0Þ=T exp � R τ
0 dτ0Hðτ0Þ	 


, the Hermite conjugate simply changes
the time-ordering operator T to an anti-time-ordering operator T.
Since the model (1) and (4) is sign-problem-free and imaginary-time
evolution does not induce additional sign problem, the imaginary-time
dynamics of themodels can be simulated by the determinant quantum
Monte Carlo (DQMC) method.

To facilitate DQMC simulations of models (1) and (4), we begin by
expressing the Hamiltonian in the form

HðτÞ=Ht +HI ðτÞ, ð12Þ

where Ht represents the kinetic energy and HI(τ) the interaction term,
in which the interaction strength varies with τ. The initial state ∣ψð0Þ� is
the ground state ofH(0). In theDQMCsimulation56, the ground state of
a given Hamiltonian is accessed by performing imaginary-time
evolution on a trial wave function:

∣ψð0Þ�= lim
τ0!1

e�τ0Hð0Þ∣ψT

�
, ð13Þ

where ∣ψT

�
is a Slater-determinant wave function generated as the

ground state of the Ht. Consequently, for disordered DSM initial state
∣ψð0Þ�= ∣ψT

�
, we set projection time τ0 = 0. For the AFM or CDW

ordered initial state, a sufficiently long τ0 is necessary to project the ∣ψT

onto the ground state of H(0). In our simulations, we implement
τ0 = 120 for the model (1), and τ0 = 20 for the model (4). We have
numerically verified the convergence of our results with respect to
increasing τ0.

Following the standard DQMC methodology56, we employ the
Trotter decomposition to discretize imaginary time. Subsequently, we
apply the Hubbard-Stratonovich (HS) transformation to decouple the
fermion-fermion interaction, transforming it into a fermion bilinear
form coupled to auxiliary fields. First, we perform Trotter decom-
position on the process of imaginary-time evolution to generate initial
state in (13):

∣ψð0Þ�= lim
Δτ!0

YNτ0

n= 1

e�ΔτHt e�ΔτHI ð0Þ∣ψT

�
, ð14Þ

where Δτ is the imaginary-time Trotter time defined by Δτ = τ0=Nτ0
.

Similarly, the Trotter decomposition in driven dynamics is
expressed as

T exp �
Z τ

0
dτ0Hðτ0Þ

� �
= lim

Δτ!0

YNτ

n= 1

e�ΔτHte�ΔτHI ðτnÞ	 

, ð15Þ
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where the Trotter time is defined as Δτ = τ/Nτ, with withNτ the number
of time slices and τn = nΔτ. Combining these two parts, the wave
function ∣ψðτÞ� is expressed as:

∣ψðτÞ�=Uðτ, 0ÞPG∣ψT

�
, ð16Þ

where Uðτ, 0Þ= limΔτ!0
QNτ

n= 1 e�ΔτHte�ΔτHI ðτnÞ
	 


and PG = limΔτ!0
QNτ0

n= 1

e�ΔτHt e�ΔτHI ð0Þ
	 


. In our practical implementation, we choose Δτ =0.05
in both (14) and (15). We have numerically confirmed that Δτ =0.05 is
sufficiently small to guarantee that the time-step error introduced by
the Trotter decomposition is negligible, with the details shown in the
Supplementary Note 6.

Next, we apply the HS transformation to decouple the interacting
part HI(τ) in models (1) and (4). For the Hubbard interaction in (1):

e�
ΔτUðτn Þ

2 ni" +ni#�1ð Þ2 =
X

li, τn = ± 1, ± 2

γðli, τn Þe
i

ffiffiffiffiffiffiffiffiffiffi
ΔτUðτn Þ

2

p
ηðli, τn Þ ni" +ni#�1ð Þ, ð17Þ

and for the density interaction in (4):

e
�ΔτV ðτn Þ

2 cyi cj + c
y
j ci

� �2

=
X

li, τn = ± 1, ± 2

γðli, τn Þe
i

ffiffiffiffiffiffiffiffiffiffi
ΔτV ðτn Þ

2

p
ηðli, τn Þ cyi cj + c

y
j ci

� �
, ð18Þ

where the four-component space-time auxiliary fields γ and η take the
following values:

γð± 1Þ= 1 +
ffiffiffi
6

p
=3, γð±2Þ= 1�

ffiffiffi
6

p
=3, ð19Þ

ηð± 1Þ= ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3�

ffiffiffi
6

p� �r
,ηð±2Þ= ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 3 +

ffiffiffi
6

p� �r
: ð20Þ

Subsequent to the procedures outlined above, both the
imaginary-time evolution operator U(τ, 0) and the generator of the
initial state PG canbeexpressed asproducts of exponentials of fermion
bilinear operators. This representation significantly simplifies calcula-
tions, enabling the straightforward determination of wavefunction
overlaps under imaginary-time evolution 〈ψ(τ)∣ψ(τ)〉 and the expecta-

tion values of observables hOðτÞj= i ψðτÞh ∣O∣ψðτÞi
hψðτÞjψðτÞi in the framework of

conventional DQMC56.

For updating the auxiliary fields, we employ a local update
scheme, sequentially updating the field at each site and time slice. In
non-equilibrium simulations, one Markov chain consists of Nsweep

iterations. Each iteration involves updating all sites across all time sli-
ces, resulting in a total of NsweepðNτ +Nτ0

ÞNsite Monte Carlo updates
per chain, where Nsweep typically ranges from 102 to 103. Here, Nsite

represents the number of lattice sites. To ensure thermalization, we
perform an initial equilibration of 5 sweeps before taking measure-
ments. Finally, for each data point, we typically run two independent
Markov chains to improve statistical sampling.

Data availability
The research data generated in this study have been deposited in the
Figshare database under accession code https://doi.org/10.6084/m9.
figshare.29207942.

Code availability
All numerical codes in this paper are available upon request to the
corresponding authors (Zi-Xiang Li and Shuai Yin).

References
1. Dziarmaga, J. Dynamics of a quantum phase transition and relaxa-

tion to a steady state. Adv. Phys. 59, 1063–1189 (2010).

2. Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Collo-
quium: Nonequilibrium dynamics of closed interacting quantum
systems. Rev. Mod. Phys. 83, 863–883 (2011).

3. Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A:
Math. Gen. 9, 1387 (1976).

4. Zurek, W. H. Cosmological experiments in superfluid helium? Nat-
ure 317, 505–508 (1985).

5. Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase
transition. Phys. Rev. Lett. 95, 105701 (2005).

6. Dziarmaga, J. Dynamics of a quantum phase transition: exact
solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701
(2005).

7. Polkovnikov, A. Universal adiabatic dynamics in the vicinity of a
quantum critical point. Phys. Rev. B 72, 161201 (2005).

8. Du, K. et al. Kibble-Zurekmechanismof Isingdomains.Nat. Phys. 19,
1495–1501 (2023).

9. Ko, B., Park, J. W. & Shin, Y. Kibble-Zurek universality in a
strongly interacting fermi superfluid. Nat. Phys. 15, 1227–1231
(2019).

10. Maegochi, S., Ienaga, K. & Okuma, S. Kibble-Zurek mechanism for
dynamical ordering in a driven vortex system. Phys. Rev. Lett. 129,
227001 (2022).

11. Keesling, A. et al. Quantum kibble-Zurek mechanism and critical
dynamics on a programmable Rydberg simulator. Nature 568,
207–211 (2019).

12. Ebadi, S. et al. Quantum phases of matter on a 256-atom pro-
grammable quantum simulator. Nature 595, 227–232 (2021).

13. Qiu, L.-Y. et al. Observation of generalized Kibble-Zurekmechanism
across a first-order quantum phase transition in a spinor con-
densate. Sci. Adv. 6, eaba7292 (2020).

14. Ebadi, S. et al. Quantum optimization of maximum indepen-
dent set using Rydberg atom arrays. Science 376, 1209–1215
(2022).

15. Sunami, S. et al. Universal scaling of the dynamic BKT transition in
quenched 2d bose gases. Science 382, 443–447 (2023).

16. Li, B.-W. et al. Probing critical behavior of long-range transverse-
field Ising model through quantum Kibble-Zurek mechanism. PRX
Quantum 4, 010302 (2023).

17. Zhong, F. & Xu, Z. Dynamic Monte Carlo renormalization group
determination of critical exponents with linearly changing tem-
perature. Phys. Rev. B 71, 132402 (2005).

18. Deng, S., Ortiz, G. & Viola, L. Dynamical non-ergodic scaling in
continuous finite-order quantum phase transitions. Europhys. Lett.
84, 67008 (2009).

19. Chandran, A., Erez, A., Gubser, S. S. & Sondhi, S. L. Kibble-Zurek
problem: Universality and the scaling limit. Phys. Rev. B 86,
064304 (2012).

20. Clark, L. W., Feng, L. & Chin, C. Universal space-time scaling sym-
metry in thedynamics of bosons across a quantumphase transition.
Science 354, 606–610 (2016).

21. Kolodrubetz, M., Clark, B. K. & Huse, D. A. Nonequilibrium dynamic
critical scaling of the quantum Ising chain. Phys. Rev. Lett. 109,
015701 (2012).

22. Gong, S., Zhong, F., Huang, X. & Fan, S. Finite-time scaling via linear
driving. N. J. Phys. 12, 043036 (2010).

23. Feng, B., Yin, S. & Zhong, F. Theory of driven nonequilibrium critical
phenomena. Phys. Rev. B 94, 144103 (2016).

24. Huang, Y., Yin, S., Feng, B. & Zhong, F. Kibble-Zurekmechanismand
finite-time scaling. Phys. Rev. B 90, 134108 (2014).

25. Liu, C.-W., Polkovnikov, A. & Sandvik, A. W. Dynamic scaling at
classical phase transitions approached through nonequilibrium
quenching. Phys. Rev. B 89, 054307 (2014).

26. Yin, S., Mai, P. & Zhong, F. Nonequilibrium quantum criticality in
open systems: the dissipation rate as an additional indispensable
scaling variable. Phys. Rev. B 89, 094108 (2014).

Article https://doi.org/10.1038/s41467-025-61611-6

Nature Communications |         (2025) 16:6181 8

https://doi.org/10.6084/m9.figshare.29207942
https://doi.org/10.6084/m9.figshare.29207942
www.nature.com/naturecommunications


27. Liu, C.-W., Polkovnikov, A. & Sandvik, A. W. Quantum versus clas-
sical annealing: Insights from scaling theory and results for spin
glasses on 3-regular graphs. Phys. Rev. Lett. 114, 147203 (2015).

28. King, A. D. et al. Quantum critical dynamics in a 5,000-qubit pro-
grammable spin glass. Nature 617, 61–66 (2023).

29. Garcia, J. S. & Chepiga, N. Resolving chiral transitions in one-
dimensional Rydberg arrays with quantum Kibble-Zurek mechan-
ism and finite-time scaling. Phys. Rev. B 110, 125113 (2024).

30. Dupont, M. & Moore, J. E. Quantum criticality using a super-
conducting quantum processor. Phys. Rev. B 106, L041109 (2022).

31. Polkovnikov, A. &Gritsev, V. Breakdownof the adiabatic limit in low-
dimensional gapless systems. Nat. Phys. 4, 477–481 (2008).

32. Divakaran, U., Dutta, A. & Sen, D. Quenching along a gapless line: a
different exponent for defect density. Phys. Rev. B 78,
144301 (2008).

33. Suzuki, S. & Dutta, A. Universal scaling for a quantum discontinuity
critical point andquantumquenches. Phys. Rev. B92, 064419 (2015).

34. Gross, D. J. & Neveu, A. Dynamical symmetry breaking in asymp-
totically free field theories. Phys. Rev. D. 10, 3235–3253 (1974).

35. Gracey, J. A., Luthe, T. & Schröder, Y. Four loop renormalization of
the Gross-Neveu model. Phys. Rev. D. 94, 125028 (2016).

36. Poland, D., Rychkov, S. & Vichi, A. The conformal bootstrap: Theory,
numerical techniques, and applications. Rev. Mod. Phys. 91,
015002 (2019).

37. You, Y.-Z., He, Y.-C., Xu, C. & Vishwanath, A. Symmetric fermion
mass generation as deconfined quantum criticality. Phys. Rev. X 8,
011026 (2018).

38. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. &
Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys.
81, 109–162 (2009).

39. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev.
Mod. Phys. 82, 3045–3067 (2010).

40. Qi, X.-L. & Zhang, S.-C. Topological insulators and super-
conductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

41. Janssen, L. & Herbut, I. F. Antiferromagnetic critical point on gra-
phene’s honeycomb lattice: a functional renormalization group
approach. Phys. Rev. B 89, 205403 (2014).

42. Parisen Toldin, F., Hohenadler, M., Assaad, F. F. & Herbut, I. F. Fer-
mionic quantum criticality in honeycomb and π-flux Hubbard
models: Finite-size scaling of renormalization-group-invariant
observables from quantum Monte Carlo. Phys. Rev. B 91,
165108 (2015).

43. Li, Z.-X., Vaezi, A., Mendl, C. B. & Yao, H. Numerical observation of
emergent spacetime supersymmetry at quantum criticality. Sci.
Adv. 4, eaau1463 (2018).

44. Tabatabaei, S. M., Negari, A.-R., Maciejko, J. & Vaezi, A. Chiral Ising
Gross-Neveu criticality of a single Dirac cone: a quantum Monte
Carlo study. Phys. Rev. Lett. 128, 225701 (2022).

45. Otsuka, Y., Seki, K., Sorella, S. & Yunoki, S. Quantumcriticality in the
metal-superconductor transition of interacting Dirac fermions on a
triangular lattice. Phys. Rev. B 98, 035126 (2018).

46. Sorella, S. & Tosatti, E. Semi-metal-insulator transition of the Hub-
bardmodel in thehoneycomb lattice.Europhys. Lett. 19, 699 (1992).

47. Herbut, I. F. Interactions and phase transitions on graphene’s hon-
eycomb lattice. Phys. Rev. Lett. 97, 146401 (2006).

48. Assaad, F. F. &Herbut, I. F. Pinning theorder: Thenature of quantum
criticality in the Kubbard model on honeycomb lattice. Phys. Rev. X
3, 031010 (2013).

49. Otsuka, Y., Yunoki, S. & Sorella, S. Universal quantum criticality in
the metal-insulator transition of two-dimensional interacting Dirac
electrons. Phys. Rev. X 6, 011029 (2016).

50. Wang, L., Corboz, P. & Troyer, M. Fermionic quantum critical point
of spinless fermions on a honeycomb lattice. N. J. Phys. 16,
103008 (2014).

51. Li, Z.-X., Jiang, Y.-F. & Yao, H. Fermion-sign-freeMajarana-quantum-
Monte-Carlo studies of quantum critical phenomena of Dirac fer-
mions in two dimensions. N. J. Phys. 17, 085003 (2015).

52. Li, Z.-X., Jiang, Y.-F., Jian, S.-K. & Yao, H. Fermion-induced quantum
critical points. Nat. Commun. 8, 314 (2017).

53. Dutta, A., Singh, R. R. P. & Divakaran, U. Quenching through Dirac
and semi-Dirac points in optical lattices: Kibble-Zurek scaling for
anisotropic quantum critical systems. Europhysics Letters 89,
67001 (2009).

54. Sun, Z., Deng, M. & Li, F. Kibble-Zurek behavior in one-
dimensional disordered topological insulators. Phys. Rev. B
106, 134203 (2022).

55. Deng, M., Sun, Z. & Li, F. Defect production across higher-order
phase transitions beyond Kibble-Zurek scaling. Phys. Rev. Lett. 134,
010409 (2025).

56. Assaad, F. & Evertz, H. World-line and Determinantal Quantum
Monte Carlo Methods for Spins, Phonons and Electrons, 277–356
(Springer Berlin, Heidelberg, 2008).

57. Li, Z.-X. & Yao, H. Sign-problem-free fermionic quantum Monte
Carlo: Developments and applications. Annu. Rev. Condens. Matter
Phys. 10, 337–356 (2019).

58. Schmitt, M., Rams, M. M., Dziarmaga, J., Heyl, M. & Zurek, W. H.
Quantum phase transition dynamics in the two-dimensional trans-
verse-field Ising model. Sci. Adv. 8, eabl6850 (2022).

59. De Grandi, C., Polkovnikov, A. & Sandvik, A. W. Universal none-
quilibrium quantum dynamics in imaginary time. Phys. Rev. B 84,
224303 (2011).

60. Hesselmann, S. &Wessel, S. Thermal Ising transitions in the vicinity
of two-dimensional quantum critical points. Phys. Rev. B 93,
155157 (2016).

61. Li, Z.-X., Jiang, Y.-F. & Yao, H. Solving the fermion sign problem in
quantum Monte Carlo simulations by Majorana representation.
Phys. Rev. B 91, 241117 (2015).

62. Li, Z.-X., Jiang, Y.-F. & Yao, H. Majorana-time-reversal symmetries: a
fundamental principle for sign-problem-free quantumMonte Carlo
simulations. Phys. Rev. Lett. 117, 267002 (2016).

63. Wei, Z. C.,Wu,C., Li, Y., Zhang, S. &Xiang, T.Majoranapositivity and
the fermion sign problem of quantum Monte Carlo simulations.
Phys. Rev. Lett. 116, 250601 (2016).

64. Herbut, I. F., Juričić, V. & Vafek, O. Relativistic Mott criticality in
graphene. Phys. Rev. B 80, 075432 (2009).

65. Tang, H.-K. et al. The role of electron-electron interactions in two-
dimensional Dirac fermions. Science 361, 570–574 (2018).

66. Jördens, R., Strohmaier, N., Günter, K., Moritz, H. & Esslinger, T. A
mott insulator of fermionic atoms in an optical lattice. Nature 455,
204–207 (2008).

67. Mazurenko, A. et al. A cold-atom fermi–Hubbard antiferromagnet.
Nature 545, 462–466 (2017).

68. Venu, V. et al. Unitary p-wave interactions between fermions in an
optical lattice. Nature 613, 262–267 (2023).

69. Yin, S., Lo, C.-Y. & Chen, P. Scaling in driven dynamics starting
in the vicinity of a quantum critical point. Phys. Rev. B 94,
064302 (2016).

Acknowledgements
We would like to thank A. W. Sandvik and F. Zhong for helpful discus-
sions. This work was supported by the National Natural Science Foun-
dation of China (Nos. 12222515 and 12075324 to Z.Z., Y.K.Y, Zhi-Xuan Li
and S.Y., No. 12347107 and No. 12474146 to Zi-Xiang Li), the Science and
Technology Projects in Guangdong Province (No. 2021QN02X561 to
S.Y.), and the Science and Technology Projects in Guangzhou City (No.
2025A04J5408 to S.Y.). The authors would like to thank the National
Supercomputer Center in Guangzhou for providing high-performance
computational resources.

Article https://doi.org/10.1038/s41467-025-61611-6

Nature Communications |         (2025) 16:6181 9

www.nature.com/naturecommunications


Author contributions
S.Y. and Z.X.L. conceived the project and planned the study. The
numerical simulations were carried out by Z.Z., Y.Y.K. and Z.X.L. All
authors contributed to the scaling analyses.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-025-61611-6.

Correspondence and requests for materials should be addressed to
Zi-Xiang Li or Shuai Yin.

Peer review information Nature Communications thanks Michele
Casula, Sei Suzuki and the other, anonymous, reviewer(s) for their con-
tribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025

Article https://doi.org/10.1038/s41467-025-61611-6

Nature Communications |         (2025) 16:6181 10

https://doi.org/10.1038/s41467-025-61611-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications

	Finite-time scaling beyond the Kibble-Zurek prerequisite in Dirac systems
	RESULTS
	Dynamics in chiral Heisenberg criticality
	Dynamics in chiral Ising criticality
	General scaling theory

	DISCUSSION
	METHODS
	Quantum Monte Carlo simulation of driven dynamics in imaginary-time direction

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




