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Proposed as an elegant symmetry relating bosons and fermions, spacetime supersymmetry (SUSY) has
been actively pursued in both particle physics and emergent phenomena in quantum critical points (QCPs) of
topological quantum materials. However, how SUSY casts the light on nonequilibrium dynamics remains open.
In this Letter, we investigate the Kibble-Zurek dynamics across a QCP with emergent N = 2 spacetime SUSY
between the Dirac semimetal and a superconductor through a large-scale quantum Monte Carlo simulation. The
scaling behaviors in the whole driven process are uncovered to satisfy the full finite-time scaling (FTS) forms.
More crucially, we demonstrate that the emergent SUSY manifests in the intimate relation between the FTS
behaviors of fermionic and bosonic observables, namely the fermions and bosons acquire identical anomalous
dimensions. Our work not only brings a fundamental ingredient into the critical theory with SUSY, but also
provides the theoretical guidance to experimentally detect QCPs with emergent SUSY from the perspectives of
the Kibble-Zurek mechanism and FTS.
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Introduction. Supersymmetry (SUSY), as a symmetry that
interchanges bosonic and fermionic fields with each other,
was proposed to ingeniously solve the hierarchy problem
by exactly canceling the fermion and boson loop correc-
tions to the mass of the Higgs particle [1–7]. Although
the partner particles predicted by SUSY are still await-
ing experimental verification, the elegance of SUSY theory
has extensively impacted modern physics from high-energy
physics to condensed matter physics [8–30]. For example,
the invariance under local SUSY transformations can au-
tomatically reproduce Einstein’s general relativity, resulting
in the theory of supergravity [2,6]. In addition, SUSY and
its spontaneous breaking were proposed in both disordered
and chaotic systems [28–32]. Moreover, recently, it was
theoretically demonstrated that spacetime SUSY can spon-
taneously emerge at some quantum critical points (QCPs)
in quantum many-body systems [8–27]. For instance, a
(2+1)-dimensional [(2+1)D] spacetime SUSY is proposed
to emerge at the superconducting QCP [23], paving another
route to experimentally realize emergent SUSY.

Up to now, SUSY is generally investigated as an equi-
librium property of the ground states. However, it is still
unclear how SUSY affects the nonequilibrium dynamics,
wherein both the ground state and excited states are involved
[33–36]. This question is motivated by the fact that nonequi-
librium dynamics is ubiquitous in nature from the inflation
of the Universe on the cosmoscopic scale to the collisions
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of particles in the Large Hadron Collider on the subatomic
scale. In particular, near the critical point, nonequilibrium
processes show remarkable universal time-dependent scal-
ing behaviors dictated by the divergent correlation timescale
[33,34,37]. In recent years, programmable quantum devices
have been developed as practical and tunable platforms to
realize QCPs [27,38–40], in which nonequilibrium dynamics
is naturally present and utilized to detect quantum critical
properties. Hence, unraveling the nonequilibrium dynamics
of the QCP with emergent SUSY will definitely enrich the
theory of supersymmetric quantum criticality and shed light
on the experimental observation of emergent spacetimexd
SUSY at QCPs.

Among various nonequilibrium realizations, the celebrated
Kibble-Zurek mechanism (KZM) attracts special attention
[41,42]. Providing a unified description on the generation and
dynamic scaling of topological defects after the linear quench
across a critical point [41,42], the KZM has been extensively
investigated in the cosmological phase transition, and clas-
sical and quantum phase transitions, from both theoretical
and experimental sides [41–67]. Moreover, dynamic critical
behaviors for other quantities are found to exist in the whole
driven process [68–73]. A finite-time scaling (FTS) theory
was proposed with complete scaling forms to understand
these scaling properties [74–76]. In addition, the FTS forms
have also been verified in experiments and numerical simula-
tions for different driving protocols [38–40,74–85]. Recently,
KZM and FTS also show their power in state preparations
and the detection of critical properties in fast-developing
programmable quantum devices [38–40,84–88], which pro-
vides a promising avenue to the experimental realization and
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FIG. 1. Sketch of the phase diagram with a SUSY critical point
and the protocol for driven dynamics with different initial states. The
correlation timescales for both bosons (yellow curve) and fermions
(violet curve) are finite in one phase (solid) but divergent (dotted)
in the other phase. Far from the critical point, different from the
conventional KZM, the transition time (long-dashed line) here is
smaller than the correlation time of fermionic degrees of freedom
in the DSM phase (bosonic degrees of freedom in the SC phase),
but larger than that of bosonic degrees of freedom in the DSM phase
(fermionic degrees of freedom in the SC phase). Around the critical
point, FTS with emergent SUSY (region marked by the short-dashed
line) dominates the scaling behaviors.

detection of QCPs featuring exotic critical properties. Given
the fundamental importance of SUSY, it is highly desired to
investigate driven critical dynamics in the framework of KZM
and FTS for a QCP with emergent SUSY.

In this Letter, we explore the nonequilibrium critical dy-
namics of a QCP with emergent N = 2 SUSY separating a
Dirac semimetal (DSM) and a superconducting (SC) phase
in a system with Stanford Linear Accelerator Center (SLAC)
fermions on a square lattice at half filling [23,89–92], as
shown in Fig. 1. By simulating the driven dynamics under a
linearly varying interaction strength in the imaginary-time di-
rection via the large-scale determinant quantum Monte Carlo
(QMC) method [93,94], we uncover that dynamic scaling
behaviors depending on the driving rate satisfy the scaling
relation of FTS with the critical exponents dictated by SUSY,
owing to the principle that both real- and imaginary-time
driven dynamics share the same scaling form characterized
by the same exponents [95–98] which has been verified in
various systems [83,95–99]. Moreover, we unveil another
dynamic scaling relation of the fermion correlation, which
combines the information from both the gapless DSM phase
and SUSY critical point, generalizing the theory of KZM. Our
study fundamentally extends the theory of emergent SUSY
to nonequilibrium dynamics which could be realized in pro-
grammable quantum processors in the near future [27].

Model and its static criticality. We begin with the model
which hosts a QCP with emergent SUSY in a square lattice.
The Hamiltonian reads [23]

H =
∑

i j

(tRc†
i↑c j↓ + H.c.) − U

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
,

(1)

in which c†
iσ (c jσ ) creates (annihilates) an electron at site

ri with spin σ =↑ / ↓, niσ ≡ c†
iσ ciσ is the electron number

operator, tR(R = ri − r j ) is the amplitude of long-range hop-

ping given by tR = i(−1)Rx

L
π

sin πRx
L

δRy,0 + (−1)Ry

L
π

sin
πRy

L

δRx,0, and U > 0

measures the strength of the attractive Hubbard interaction.
As shown in Fig. 1, when U is small, the system is in the
DSM phase with a single Dirac point at p = 0 (namely the
� point). Note that this model does not contradict with the
fermion-doubling theorem because the hopping here is non-
local and decaying as 1/r. In contrast, when U is large, the
ground state is in the SC state with singlet pairing. In between
the two phases, there is a QCP at U = Uc ≈ 0.83 (in units of
the bandwidth) [23].

Although the microscopic Hamiltonian (1) does not have
SUSY, it was shown that an emergent N = 2 SUSY appears
at the critical point Uc [23]. The most remarkable feature is
that anomalous dimensions for both bosonic and fermionic
fields obtained via QMC simulations are close to their exact
values, η f = ηb = 1

3 , where η f and ηb are the fermion and
boson fields’ anomalous dimensions, respectively [100]. This
equivalence of fermion and boson anomalous dimensions is a
hallmark of SUSY. Moreover, the correlation length exponent
ν = 0.87(5) is also consistent with the critical field theory
with SUSY [101–103]. In the following, we will explore the
signature of SUSY in the nonequilibrium driven dynamics.

Dynamic protocol. The quantum KZM focuses on the real-
time driven dynamics across a QCP [33,34,47–49]. However,
simulating the real-time dynamics in higher-dimensional sys-
tems is still extremely difficult. Fortunately, it was shown
that the imaginary-time driven critical dynamics shares the
same scaling forms and critical exponents with the real-time
case, except for the detailed scaling functions [95–97]. The
reason is that for both cases, when the driving rate is small,
the nonequilibrium dynamics of the system is controlled by
the low-lying energy excited states which hold critical proper-
ties dominated by the QCP. Accordingly, as the only tuning
parameter characterizing the extent of departure from the
equilibrium state, the driving rate provides a natural char-
acteristic quantity to describe the nonequilibrium dynamic
scaling behaviors in both real-time and imaginary-time di-
rections [95–97]. Scaling analyses shows that for both real-
and imaginary-time driven dynamics, the driving rate has
the same critical dimension. Consequently, one can make a
detour to detect the universal scaling properties in the real-
time driven process from the imaginary-time dynamics, which
can be simulated via the QMC method [78,80,95–98]. In
the following, we use determinant QMC (see Supplemental
Material [104]) to simulate the dynamics of model (1) obey-
ing the imaginary-time Schrödinger equation − ∂

∂τ
|ψ (τ )〉 =

H (τ )|ψ (τ )〉, in which g, defined as g ≡ U − Uc, varies lin-
early with the imaginary time τ as g = ±Rτ with R being the
driving rate to cross the critical point Uc.

Moreover, although the original KZM focuses on scaling of
topological defects generated after the quench [33,34,41,42],
more general scaling behaviors exist for other quantities in the
whole driven process [68–73]. By identifying an FTS region
controlled by the driving-induced timescale ζR ∝ R−z/r ,
in which z is the dynamic exponent and r = z + 1/ν

with ν being the correlation length exponent, the FTS

L060301-2



NONEQUILIBRIUM CRITICAL DYNAMICS WITH … PHYSICAL REVIEW B 112, L060301 (2025)

FIG. 2. Driven dynamics from the DSM phase. (a) Log-log plots of M2 vs R driven to Uc before (a1) and after (a2) rescaling. The inset
in (a1) shows M2 ∝ L−2 at R = 5 (dashed-dotted line). For large R, power fitting for L = 21 (brown solid line) shows M2 ∝ R−0.285(3) with
the exponent close to (1 + ηb − d )/r = −0.312 (dashed line) from Ref. [23]. (b) Curves of M2 vs g for fixed RLr = 347.5 and different L
before (b1) and after (b2) rescaling. (c) Log-log plots of Gf vs R driven to Uc before (c1) and after (c2) rescaling. The inset in (c1) shows
Gf ∝ L−2 at R = 5 (dashed-dotted line). For large R, power fitting for L = 13 (brown solid line) shows Gf ∝ R0.152(4) with the exponent close
to ηf/r = 0.154 (dashed line) from Ref. [23]. (d) Curves of Gf vs g for fixed RLr = 347.5 and different L before (d1) and (d2) after rescaling.

theory provides the full scaling forms characterizing the
nonequilibrium dynamics near the critical point [74–76], as
shown in Fig. 1. Recently, it has been shown that FTS forms
are still applicable in Dirac systems with short-range hopping
[78]. Here, we explore the driven dynamics in the critical point
with SUSY for SLAC fermions with long-range hopping.

Dynamics with DSM initial state. First, we study the driven
dynamics by increasing U linearly starting from the DSM
initial state, as illustrated in Fig. 1. We begin with the dy-
namics of the square of the SC order parameter, defined
as M2 ≡ 1

L4

∑
i j 〈�†

i � j〉 with �i = ci↓ci↑ the on-site singlet
pairing [23]. In the DSM state, it is straightforward to show
that M2 ∝ L−d . At QCP, M2 obeys the scaling M2 ∝ L−1−ηb

at equilibrium. For large R, this initial state property can be
reflected at Uc, dictating that M2 obeys

M2 ∝ L−d R
1+ηb−d

r , (2)

according to the scaling analyses. Figure 2(a) shows the de-
pendence of M2 on R for different L at Uc. Power fitting
demonstrates that for large R, M2 obeys a power function on
R as M2 ∝ R−0.285(3), in which the exponent is close to 1+ηb−d

r

with ηb = 1
3 , ν = 0.87, and d = 2 set as the input. Moreover,

with a fixed large R, Fig. 2(a1) shows that M2 ∝ L−2. These
results confirm Eq. (2). (The dataset is available in Ref. [105].)

Remarkably, the critical exponent of R in Eq. (2) is a
composite of the equilibrium exponents featuring the SUSY
property, demonstrating that the SUSY can manifest itself via
the scaling relation of KZM and FTS. In addition, for small

R, M2 almost saturates to its equilibrium value independent of
R, satisfying M2 ∝ L−1−ηb [23]. Combing the cases for large
R and small R, the FTS form for M2 at Uc should be M2 =
L−1−ηbF (RLr ), which is verified via the scaling collapse in
Fig. 2(a2) by substituting ηb = 1

3 and ν = 0.87. For large R,

F (RLr ) ∝ (RLr )
1+ηb−d

r , as shown in Fig. 2(a2), presenting the
dynamic information of SUSY again. In addition, Eq. (2) is
similar to the FTS relation in the pure boson model [75,77],
demonstrating the universality of KZM critical scaling behav-
ior, regardless of the presence of a gapless Dirac fermion [78].

Moreover, we show that critical properties with SUSY can
be reflected via the FTS in the driven process. In this case, the
full scaling form satisfies

M2(R, L, g) = L−d R(1+ηb−d )/rF1(RLr, gL1/ν ), (3)

in which gL1/ν is included to take account of the off-critical-
point effects. By substituting the critical exponents with
SUSY, we verify Eq. (3) in Figs. 2(b1) and 2(b2). We note
that Eq. (3) is consistent with the FTS in conventional bosonic
QCP [75,77], and thus demonstrates its universality.

To further unravel the dynamic scaling with emergent
SUSY, it is also instructive to explore the correlation function
of the fermion operator, which serves as the SUSY part-
ner of �i. The equilibrium finite-size scaling of the fermion
correlation Gf (L), defined as Gf (L) ≡ 1

L2

∑
i 〈c†

i ci+rm + H.c.〉
with rm = ( L−1

2 , L−1
2 ), is Gf (L) ∝ L−d−z+1−ηf , where ηf = 1

3
is dictated by SUSY. When driven from the gapless Dirac
phase with large R, it is expected that the initial information
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FIG. 3. Driven dynamics from the SC phase. (a) Log-log plots of M2 vs R driven to Uc before (a1) and after (a2) rescaling. For large R,
power fitting for L = 21 (brown solid line) shows M2 ∝ R0.61(3) with the exponent close to (1 + ηb)/r = 0.62 (dashed line) from Ref. [23].
(b) Curves of M2 vs g for fixed RLr = 347.5 and different L before (b1) and (b2) after rescaling. (c) Semilog plots of Gf vs R driven to Uc

before (c1) and after (c2) rescaling, where the appearance of straight lines indicates the presence of exponential decay. (d) Curves of Gf vs g
for fixed RLr = 20.85 and different L before (d1) and (d2) after rescaling.

Gf (L) ∝ L−d−z+1 of the DSM phase should still be remem-
bered at the critical point Uc. Accordingly, for large R, the
scaling relation between Gf (L) and R at Uc should be

Gf (R, L) = L−d−z+1R
ηf
r . (4)

Figure 2(c) shows the numerical results of Gf (R, L). We
find that for large R, Gf (R, L) is a power function of R with
the exponent almost independent of L. Power fitting shows
that the exponent is 0.152(4), which is consistent with the
results ηf

r = 0.154 within the error bar, given by the critical
exponents for N = 2 SUSY in 2+1 dimensions [23]. More-
over, for fixed R, Fig. 2(c1) shows that Gf (R, L) ∝ L−2. These
results confirm Eq. (4). Similar to Eq. (2), Eq. (4) demon-
strated that the SUSY can be delivered in the scaling of R.
Remarkably, we also obtain the scaling relation of the fermion
correlator for the driven dynamics with the DSM initial state,
as dictated in Eq. (4), which can be generalized to other Dirac
fermionic QCPs.

In addition, combining the scaling relation with large
and small R, one can obtain the FTS form Gf =
L−d−z+1−ηfG(RLr ) in which G(RLr ) ∝ (RLr )

ηf
r for large R.

These results are confirmed in Fig. 2(c2). Moreover, similar to
Eq. (3), we show that although SUSY emerges exactly at Uc,
it can affect the dynamic scaling of Gf in the driven process.
With gL1/ν included, the FTS form can be generalized as

Gf (R, L, g) = L−d−z+1Rηf /rG1(RLr, gL1/ν ). (5)

For an arbitrarily fixed RLr , we verify Eq. (5) in Figs. 2(d1)
and 2(d2) by substituting the critical exponents with SUSY.

Dynamics with SC initial state. We then explore the dy-
namic scaling with emergent SUSY from the SC initial state.
In Fig. 3(a1), we find that for large R, M2 increases as M2 ∝
R0.61(3) with the exponent close to 1+ηb

r and almost does not
depend on L, demonstrating that

M2 ∝ R
1+ηb

r . (6)

Here, the anomalous dimension ηb = 1
3 again enters the

scaling relation depending on R as a signature of SUSY. Com-
bining these results with the finite-size scaling for small R, one
obtains the FTS form at Uc as M2 = R

1+ηb
r F2(RLr ), which is

verified in Fig. 3(a2).
By including gL1/ν , the full FTS form of M2 in the driven

process reads [68,75,78,79]

M2(R, L, g) = R
1+ηb

r F3(RLr, gL1/ν ), (7)

which is verified in Figs. 3(b1) and 3(b2), demonstrating that
the scaling with SUSY can appear in the driven process near
the critical point.

Then, we explore the dynamic scaling of the fermion cor-
relation Gf (L). For large R, we find that Gf at Uc changes
with R as an exponentially decaying function as shown in
Fig. 3(c1). This is because for larger R, information in the
gapped SC phase can be brought to Uc. By rescaling Gf and R
by L according to the critical exponents with SUSY, we find
that the rescaled curves collapse onto each other, as shown
in Fig. 3(c2), confirming the FTS form of Gf (L) at Uc is
Gf = L−2−ηfG2(RLr ). In addition, Fig. 3(c2) also shows that
the scaling function G2(RLr ) satisfies G2(RLr ) ∝ exp(−RLr ).

L060301-4



NONEQUILIBRIUM CRITICAL DYNAMICS WITH … PHYSICAL REVIEW B 112, L060301 (2025)

Moreover, we show that SUSY can affect the dynamic
scaling of Gf in the driven process. With gL1/ν included, the
FTS form can be generalized as

Gf (R, L, g) = L−2−ηfG3(RLr, gL1/ν ). (8)

For an arbitrarily fixed RLr , we verify Eq. (8) in Figs. 3(d1)
and 3(d2) by substituting the critical exponents with SUSY.

The hallmark of emergent SUSY in nonequilibrium dy-
namics. The hallmark of emergent SUSY is the equivalence
of anomalous dimensions for boson and fermion. In contrast
to previous sections, in which critical exponents are set as
the input to verify the scaling theory, here we show that the
dynamic scaling theory for large R provides an efficient way
to determine critical exponents with high accuracy. According
to Eqs. (2) and (6) and the results of M2 vs R shown in
Figs. 2(a1) and 3(a1), we access boson anomalous dimensions
ηb = 0.36(4) and r = 2.23(8). Similarly, from Eq. (4) and
the result in Fig. 2(c1), the fermion anomalous dimension is
achieved, η f = 0.337(14). The values of boson and fermion
anomalous dimensions are identical to each other and con-
sistent with exact values ηb = η f = 1

3 within the error bar,
providing convincing evidence of emergent SUSY. Hence, our
results unambiguously demonstrate that the nonequilibrium
dynamic scaling is a powerful approach to reveal the feature
of emergent SUSY, offering a practical tool to detect emergent
SUSY in experimental platforms.

Summary. In summary, we study the driven dynamics
of a QCP with emergent SUSY, through sign-problem-free
QMC simulation. Driving the system from both DSM and
SC phases, we discover interesting nonequilibrium scaling

behaviors. In particular, we unveil that SUSY can manifest
itself in the scaling relations of KZM and FTS. Moreover,
we show that SUSY also plays roles in the driving process
by obeying the FTS forms with the critical exponents of the
SUSY critical point. The scaling relation of the fermion corre-
lation on the driving rate is obtained, which can be generalized
to other Dirac fermionic QCPs.

Recently, programmable quantum processors have been
developed as advanced platforms to realize different phases.
In these experiments, the KZM and the FTS are generally
used in state preparation. The dynamic scaling for the QCP
with emergent SUSY revealed here provides a practical the-
oretical framework to detect emergent SUSY in experimental
platforms. Noting the progress on the experimental proposal
for (1 + 1)D SUSY [27], it is expected that our present re-
sults are detectable and potentially helpful for investigating
QCP with emergent SUSY in these systems. In addition, our
results unambiguously demonstrate that SLAC fermions with
long-range hopping still satisfy the nonequilibrium scaling of
KZM, although it was shown that special caution should be
paid to the unexpected finite-temperature transition related to
the excited states [106].
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